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Abstract—Despite growing research into the socio-economic as-
pects of vulnerability [1]–[4], relatively little work has linked pop-
ulation dynamics with climate change beyond the complex rela-
tionship between migration and climate change [5]. It is likely,
however, that most people experience climate change in situ, so
understanding the role of population dynamics remains critical.
How a given number of people, in a given location and with vary-
ing population characteristics may exacerbate or mitigate the im-
pacts of climate change or how, conversely, they may be vulner-
able to climate change impacts are basic questions that remain
largely unresolved [6]. This paper explores where and to what ex-
tent population dynamics intersect with high exposure to climate
change. Specifically, in Eastern Africa’s Lake Victoria Basin (LVB),
a climate change/health vulnerability hotspot we have identified
in prior research [7], we model child undernutrition vulnerabil-
ity indices based on climate variables, including proxy measures
(NDVI) derived from satellite imagery, at a 5-km spatial resolution.
Results suggest that vegetation changes associated with precipita-
tion decline in rural areas of sub-Saharan Africa can help predict
deteriorating child health.

Index Terms—Climate, Lake Victoria Basin (LVB), NDVI, stunt-
ing, undernutrition, vulnerability.

I. INTRODUCTION

THE impact of climate change on humans varies geograph-
ically. The risks from warming, in particular, depend upon

where one lives. Coastal communities are at risk of sea level
rise. Inland populations, especially those depending upon sub-
sistence agriculture, are at risk of rising temperatures and lower
levels of precipitation that can reduce the productivity of the
land and alter the habitats of disease vectors. Some of these
environmental changes can be assessed through the analysis of
satellite imagery. Hay, Guerra, Tatem, Atkinson, and Snow, for
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López-Carr and Kevin M. Mwenda.)
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example, have utilized imagery to identify zones at high risk
of malaria in sub-Saharan Africa [8]–[10]. In a more general
way, Weeks, Getis, Hill, Gadalla, and Rashed [11], Getis, Stow,
Hill, Rain, Engstrom, Stoler, Lippitt, Jankowska, Lopez-Carr,
Coulter, and Ofiesh [12] have found that health in urban areas is
associated with the amount of vegetation (observed from high-
resolution satellite imagery). It is not the vegetation per se that
is affecting health. Rather, levels of vegetation serve as a proxy
for the overall well being of the population. However, in rural
areas of the developing world, rain-fed subsistence agriculture
represents much of a region’s photosynthetic output, especially
in relatively arid areas where virtually all rural inhabitants de-
pend on agro-pastoralist livelihoods for survival. Perhaps in no
place is this truer than in sub-Saharan Africa. Given this inti-
mate population-crop viability relation in the region, and the
high proportion of infant and child deaths related to undernutri-
tion, it seems that remotely sensed measures of photosynthetic
production coupled with local precipitation measures might be
important predictors of child undernutrition. Following the re-
cent tradition of linking pixels to people in human–environment
systems, this study explores how vegetation changes associated
with climate change in rural areas of sub-Saharan Africa might
help predict health status among children.

Where and to what magnitude is child undernutrition related
to climate change? Research points to the devastating health ef-
fects of climate change, especially in places already experienc-
ing significant health burdens [13]–[15]. The diverse pathways
linking climate change and disease ultimately operate through
vulnerability mechanisms. We define vulnerability as a func-
tion of the sensitivity and adaptive capacity of socio-ecological
systems when exposed to environmental and climate changes
[16]–[18]. Climate change in sensitive environments can result
in increased vulnerability at a number of nested scales from in-
dividuals to political states, with a consequent negative effect on
human health [19], [20]. In this paper, we move beyond general-
ized regional models to better understand how climate variation
affects child undernutrition at the smallest nested scale, the lo-
cation of the child. While all individuals may become increas-
ingly exposed to climate-related diseases in the world’s most
climate-vulnerable parts of developing countries, children are
particularly vulnerable due to their physiological and cognitive
immaturity (sensitivity) and limited ability to change their situ-
ation (adaptive capacity) [21], [22]. Moreover, the World Health
Organization asserts that “the major diseases most sensitive to
climate change—diarrhea, vector-borne disease like malaria,
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and infections associated with under-nutrition—are most
serious in children living in poverty” [23]. Childhood diseases
have a life-long impact, resulting in a higher probability of de-
creased overall wellness and diminished human capital later in
life [24]–[26].

Research has grown sharply in the area of socio-economic
aspects of vulnerability [27], [28], yet little work to date has em-
pirically tested population dynamics linked to climate change
at meaningful spatial scales. How Number, density, and spatial
distribution of a population may exacerbate or mitigate the im-
pacts of climate change or the magnitude of these impacts are
questions that remain far from resolved [6]. Similarly, there is
already a growing literature on remotely sensed measurements
of infectious disease dynamics, but relatively little work to date
in the area of climate change links to child undernutrition vis
a vis spatially varying and temporally changing indicators of
food production potential. This is both a critical gap and a re-
search opportunity, as well as an area of attention in the future as
climate change and vulnerability will continue to pose human
health challenges. Population dynamics and distribution may
exacerbate or mitigate the impacts of climate change and may
be varyingly vulnerable to climate change impacts [6]. Where
and to what extent do population dynamics intersect with high
exposure to climate change? We explore this question in Eastern
Africa’s Lake Victoria Basin (LVB), a climate change vulner-
ability hotspot [7]. Specifically, we model child undernutrition
probability estimates based on climate variability and landscape
vigor at a 5-km resolution. This paper has two main objectives:
first, we develop a spatially and temporally integrative dataset of
climate exposure components related to children’s vulnerabil-
ity to undernutrition. Second, we develop and map measures of
climate-related vulnerability to undernutrition among children
under 5 in Eastern Africa’s LVB.

II. DATA AND METHODS

To achieve our objectives, we employ a unique combination
of datasets including vegetation data coupled with the intro-
duction of a new multidecadal remotely sensed precipitation
dataset integrated with cluster level data from the Demographic
and Health Surveys (DHS). While the benefits of using data from
multiple satellite sensors over several decades to perform analy-
ses at the human–environment interface is fairly well known and
has been recently implemented for this study area by Pricope,
Michaelsen, Lopez-Carr, Funk, and Husak [29], the inclusion
of DHS data to test the relevance of incorporating remotely
sensed data into health studies is relatively novel. Thus, we
combine precipitation and vegetation trends from 1982 to 2012
with DHS cluster level data for the countries within the LVB
(Burundi, Kenya, Rwanda, Tanzania, and Uganda) to perform
grid-level modeling of stunted children under five years of age
at the 5-km spatial resolution.

Trends in precipitation result from analysis of the Climate
Hazards Group Infrared Precipitation with Stations (CHIRPS)
dataset, a blend of available stations, geostationary satel-
lite information and a long-term climatology [30], [31]. The
CHIRPS dataset is a near-real-time, quasi-global rainfall at 0.05°

TABLE I
CLIMATE-RELATED INDEPENDENT VARIABLES, SPATIO-TEMPORAL

RESOLUTION, REFERENCE YEAR, AND DATA SOURCES

Indicator Name Resolution Temporal Scale Data Source

Child Stunting Cluster 2008-2012 MeasureDHS.org
Monthly Rainfall 5km 1981-2012 CHIRPS
NDVI 8km 1982-2012 GIMMS

(approximately 5 km) resolution available at five-day time steps
back to 1981. NDVI data provided by the NASA Global Inven-
tory Monitoring and Modeling System (GIMMS) dataset esti-
mates surface greenness based on satellite estimated reflectance
back to 1981. This dataset uses homogenized data from multiple
satellites to create a best estimate of vegetation vigor, and is used
to capture changes in land cover and vegetation stress [32]–[34].

Next, we examine climate exposure, or the degree to which a
population experiences climate change impacts in their environ-
ment, as a function of precipitation and greenness/vigor change
in the LVB, with the latter data being derived from performing
a Theil–Sen regression analysis on the Advanced Very High
Resolution Radiometer GIMMS normalized difference vege-
tation index (NDVI) third generation (NDVI3g) dataset. The
Theil–Sen method is preferred mainly because it is insensitive
to extreme values in the dataset, and the start and end time of
the time series. It is a nonparametric method so it does not have
to assume a particular distribution in the dataset [35]. While we
recognize that a variety of socio-political, economic and cul-
tural factors play important roles in determining vulnerability
to climate change [36], [37], this study is exploratory in nature,
and therefore the scope is limited to focusing on demographic
and land-use pressures.

We create an integrative framework that uses weighted and
standardized climate exposure variables to map climate-related
chronic childhood undernutrition, as measured by extremely
low height for age, commonly referred to as stunting. Before
selection of the climate exposure variables, we eliminated tem-
perature as a prospective climate variable, since it manifests it-
self through the change in vegetation as measured by the NDVI.
NDVI is a well-known remotely sensed proxy for the amount of
standing biomass in a given area. NDVI is based on a ratio of
red and near-infrared wavelengths [(NIR-Red)/(NIR+Red)] due
to the different reflectance and absorption properties of chloro-
phyll, a pigment found in the leaves of plants. It is well correlated
with the amount and seasonality of above-ground net primary
production and vegetation biophysical parameters [38], [39].
We then performed spatially explicit vulnerability mapping of
climate-driven childhood stunting at the 5-km resolution. Fig. 1
illustrates a flowchart for the methodology.

The data used are either publicly available or created by the
Climate Hazards Group at UCSB (see Table I).

A. Data Preprocessing

The number of DHS-sampled malnourished (stunted) chil-
dren under 5 in the LVB was aggregated from the household to
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Fig. 1. Flowchart for methodology.

TABLE II
CLIMATE-RELATED INDEPENDENT VARIABLES, OBSERVED RELATIONSHIP

WITH CHILD STUNTING AND REGRESSION COEFFICIENT AS WEIGHTS

Indicator Name Observed Relationship Weights

Monthly Rainfall + 13
NDVI − 0.73

the cluster level (DHS 2008–2012; 95,500 households; n = 856
DHS household clusters) after which the prevalence was calcu-
lated as a percentage of children under 5 in each cluster. NDVI
change from 1982 to 2012 was calculated using Theil–Sen es-
timators and was consequently resampled to 5-km resolution
using the nearest neighbor approach. The 5-km resolution is
appropriate given the 5-km uncertainty of the location of rural
DHS clusters. Change in precipitation was measured as rainfall
change in millimeters from 1981 to 2012.

B. Mapping of Childhood Stunting Prevalence

The cluster-level childhood stunting prevalence was con-
verted into a continuous surface using ordinary kriging, assum-
ing an unknown mean prevalence with a trend across the LVB
and a search radius equivalent to 5 km. Kriging was employed as
the interpolation method of choice since it contains parameters
for expressing uncertainty that is inherent in the location of the
DHS clusters.

C. Regression

We applied ordinary least squares (OLS) regression using the
5-km grid as the unit of analysis to estimate the parameters
of a linear model between child undernutrition and the set of
two climate exposure variables, namely NDVI and precipitation
change (see Table I). Regression analyses with DHS data at the
cluster level and adjacent pixels representing NDVI and rainfall
were run initially with only modest significance for rainfall and

Fig. 2. Ordinary kriging map of childhood stunting prevalence (5-km
resolution).

low R2’s. A total of 10 241 pixels (5 × 5 km) were available
for the regression analysis and the model is represented by
the following equation: yi = b0 + b1x1,i + b2x2,i + ei , where
yi is the expected value of the dependent variable y at pixel
i, x pertains to the two independent climate-related variables,
b refers to the estimated regression coefficients, and ei is the
residuals at each pixel i.

D. Calculating Standardized Measures of Vulnerability

In order to render them comparable, the independent climate-
related indicators were each weighted by the coefficients from
the OLS regression analysis (see Table II). The two domains
were combined and the final vulnerability surface was normal-
ized within a range of 0–1 using linear min–max normalization,
where 0 indicates little to no climate-related childhood stunting
prevalence and 1 represents the highest vulnerability.

III. RESULTS

OLS regression analysis suggested that both climate-exposure
variables were significantly related to child undernutrition in
the LVB. A significantly positive association (p-value < 0.05)
was found between increase in rainfall and child stunting. A
significantly negative association (p-value < 0.05) was found
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Fig. 3. Map of standardized measures of vulnerability of child stunting due
to change in climate exposure variables (both precipitation and NDVI).

between increase in vegetation index and child stunting (see
Table II).

A map of childhood stunting prevalence is shown in Fig. 2.
Child stunting vulnerability is generally higher in regions with
a greater increase in rainfall over the years, especially in the
Northeastern and Southeastern parts of the LVB in Kenya and
Tanzania (see Figs. 3 and 4). Conversely, vulnerability of child
stunting is relatively lower in the LVB areas that experienced
the least change in vegetation index. Overall, vulnerability of
climate-related child stunting is higher in areas that experienced
increase in rainfall coupled with negative change in vegetation
index (see Figs. 3 and 5).

IV. DISCUSSION

Exploratory work presented here notes that pockets of high
stunting are salient in the southern portion of the LVB but other
concentrations are evident in the eastern and southwestern por-
tions of the LVB. Relatively lower stunting is observed in parts
of the northeast. The finding that child stunting vulnerability
is higher in areas that experience increase in rainfall coupled
with negative change in vegetation index suggests the impor-
tance of human socio-political and agricultural factors. Specifi-
cally, in areas with increased rainfall and decreased NDVI, crop
production may be waning despite potentially favorable climate
change conditions. If this is the case, factors driving changing

Fig. 4. Map of standardized measures of change in precipitation in the LVB
(1981–2012).

food demand and production, and other environmental variables
not measured here, such as soil quality change, may explain food
insecurity and its consequences more than climate change per se.
This finding has implications for policy and agricultural assis-
tance in the region. A highly dense rural population intensively
cropping the land over time may be pushing local agricultural
and ecological systems to become less resilient. By exploring the
two domains of climate-related vulnerability to child stunting,
this study does not necessarily imply that both domains have
similar effects on overall vulnerability. While rainfall change
generally has a greater effect on child stunting than change in
NDVI, some areas with increase in rainfall and positive NDVI
change may show a higher vulnerability of child stunting, such
as the LVB area between Rwanda and Uganda. Such apparently
inconsistent results point to the importance of spatial variation
in human and political geography.

V. CONCLUSION

This paper begins to explore a crucial barrier to further
progress in the field of climate-health interactions. Numerous
studies have utilized remotely sensed imagery for developing
measures of environment related to climate change and health
[40]. However, few studies have merged such data with pop-
ulation and health data to obtain detailed and location-specific
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Fig. 5. Map of standardized measures of change in NDVI in the LVB (1982–
2012).

maps of climate change impacts on children’s undernutrition. By
unraveling some of the statistical links between climate change
and child health, projecting where African children most vul-
nerable to climate change reside now and possibly in the near
future, our results have direct implications for adaptive response
given demographic and land change policy.

This project has multiple potentially transformative and novel
components including: 1) the first application of a 5-km precip-
itation and NDVI change grid for LVB, which will enhance our
ability to analyze the minimum rainfall and maximum vegeta-
tion change thresholds necessary to support staple crops across
different regions, 2) the first application of time-series NDVI
data to climate-health vulnerability research, 3) the first ap-
plication of under-five measure of vulnerability at the 5-km
resolution, and 4) combining 1-3 above, the first integration of
DHS cluster-level data on children’s health with climate, land
change, livelihood, and demographic data to model the location
and magnitude of the relationships between climate and child
undernutrition.

We note caveats in this exploratory research. One concern
is theoretical. The extent to which undernutrition is expressed
spatially has been inadequately explored and, therefore, we re-
main uncertain to what extent spatial interpolation as opposed
to, for example, a clustering, regional, or threshold approach,
appropriately describes the spatial distribution of child under-

nutrition. A second caveat is methodological. We believe that
our statistics should be interpreted as indications rather than for-
mal tests due to the likely presence of spatial autocorrelation.
The interpolated child undernutrition prevalence surface in the
model shown here led to significant results for NDVI and rainfall
in predicting stunting. However, interpolation increases obser-
vations and reduces variance. Additional research is necessary
to understand potential relationships through refining indepen-
dent variables and adding additional explanatory variables. A
third issue combines theory and methods. The existence of un-
measured variance suggests the addition of further human and
physical variables.

In future research, we hope to address these concerns and,
in doing so, expand our analysis to provide novel, uncertainty-
aware estimates of children’s nutritional vulnerability to climate
change in the LVB. We hope to refine and expand our approach
to the continental scale in future research and to develop a
simulation framework to address the uncertainty inherent in
interpolations. While this strand of integrative research remains
in an early stage of development, with associated limitations,
the opportunity for further refinement is great given the rapidly
increasing availability of geo-reconciled human and physical
data. Continued exploration of climate change interactions with
local environments and implications for human populations and
their health promises rich policy implications for enhancing
rural resilience in the fastest growing, poorest, rural areas of the
planet.
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