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Abstract

The application of multiple endmember spectral mixture
analysis (MESMA) to map the phvsical composition of urban
morphology using Landsat Thematic Mapper (TM) data is
evaluated and tested, MESMA models mixed pixels as linear
combinations of pure spectra. called endmembers, while
allowing the types and number of endmembers to vary on a

per-pixel basis. A total of 63 two-, three-, and four-endmember

models were applied to a Landsat T™ image for Los Angeles
County, and a smaller subset of these models was chosen
based on fraction and root-mean-squared error (RMSE] crite-
ria. From this subset, an optimal model was selected for each
pixel based on oplimization for maximum area coverage. The
resultant endmember fractions were then mapped inio four
main componenls of urban land cover: Vegetation, Impervious
surfaces, Soil, and Water/Shade. The mapped [ractions were
validated using aerial photos. The results showed that a ma-
joritv of the image could be modeled successfully with two- or
three-endmember models. The validation results indicated the
robustness of MESMA for deriving spatially continuous vari-
ables quantified at the sub-pixel level. These parameters can
be readily integrated into a wide range of applications and
models concerned with physical. economic, and/or socio-
demographic phenomena that influence the morphological
patterns of the city.

Introduction

A recurrent theme in urban remote sensing studies has been
how to derive summary indicators ol physical components of
urban morphology from remolely sensed data (Green, 1955;
Forster, 1985; Ridd, 1995; Jensen and Cowen, 1999). This type
of analysis has traditionally been limited due lo the spectral
heterogeneily of urban features in relation to the spatial reso-
lution of the remole sensing sensors (Weber, 1994). This is
especially true in the contexl of multispectral images with
medium spatial resolution such as those provided by Landsal,
SPOT, and the Indian satellites. Because of the presence of
spectral mixing in the pixels of these images, the identifica-
tion of urban land cover using per-pixel analylical techniques
becomes very difficult because the continuum of land cover
cannot be readily divided into discrete classes.
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Strahler et al. (1986) divide scene models into two types,
H- and L-resolution models, depending on the relationship
between the size of elements (e.g.. vegelalion) in the scene
and the resolution cell of the sensor. In the H-resolution
model, scene elements are larger than resolution cells and,
therefore, the spatial arrangement of scene elements can
directly be detected. The L-resolution model is the opposite,
where scene elements are not individually detectable because
they are smaller than the resolution cells. Detecting Lhe spatial
arrangement ol objects may require a resolution cell size sev-
eral times smaller than their size. Accordingly, for multispec-
tral images with medium spatial resolution, the scene model
ol urban landscapes can be regarded as an L-resolulion model.
Further, as the size of objecls in the urban scene becomes in-
creasingly small relative to the resolution cell size, it may no
longer be possible lo consider objects individually (Strahler
et al., 1986). Instead, the urban scene model can be regarded
as a continuous model, in which the measurement of each
pixel can be treated as a sum of spectral interactions between
various scene elements weighted by their concentration or
relalive aerial proportions within the resolution cell (i.e., a
mixture model). Therefore. it can be asserted that, in the con-
tex1 of medium resolution multispectral images, H-resolution
models in urban areas should operate in a subservient role to
L-resolution models (Graetz, 1990; Rashed et al., 2001; Phinn
el al., 2002).

Over the past ten vears, there has been a trend toward de-
scribing the spatially varying character of land cover in terms
of continuous surfaces (Mather, 1999). Through this trend. the
proportions of different components of land cover are esti-
maled for each pixel of the image. Fuzzy classification and
spectral mixture analysis (SMA) are two groups of techniques
that have been proposed to provide soft analysis ol mixed
pixels. The work we present in this paper is based on the SMA
approach. The SMA approach assumes that a landscape is
formed from continuously varying proportions of idealized
types of land cover with pure spectra, called endmembers
(Adams et al., 1986; Adams et al., 1993). Endmembers are
abstractions ol land-cover materials with uniform properties
present in the scene. In an urban environment, these may
include impervious surfaces, vegetation lypes, water bodies,
and bare soils (Ridd, 1995). Linear SMa is the process of solv-
ing for endmember fractions, assuming that the spectrum
measured for each pixel represents a linear combination of
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erichinewber spectra that corresponds to the phvsical mixtore
of surface components weighted by theic areal abindance. Al-
though nonlinear mixing can be important for some types of
analysis, the eftects of mulliple scattering in the majoritv of
Shia applicalions are assumed to he negligible (Roberts ot af.,
1998a: Mather, 19494,

Meny sk applications have been applied to multispec-
tritl imtagery in non-urban envirommoents (e, Roborts ef af.,
19981y Ronan ot al., 2002). but same recent studies have indi-
cuted the feasibility of 1hix technique in urhan environments
(oo Ward et af.. 2000; Madhaovan et ol 2001; Rashed ot al..
2001; Sniall, 2001: Phinn et ol 2002 Wu and Murray. 2003).
Findings lronn these stucies indicate that o clussification of
the urban scene based on $yA-derivad measures mav be supe-
rior to other traditional per-pixel classifications techniques.
However. they alsa show a higher degree of RMS crror associ-
ated with these models (Ward of af.. 2000: Rashed et af., 2001;
Small, 2601). This is because the standard 5xa model imple-
ments an mvariable set of endmembers (o model the spectra
in all the pixels within an image. The assumption fails wo ac-
couttt for the fact that, due to the diversity of urban materials.
the nwmber and tvpe of componeits within the field of view
are variable. For example: the endmemhers required to de-
seribe the cenlral husiness district ol a city are diflerent than
those required (o deseribe single famile residential districts or
urhan recreatiomal areas. In addition, ifa pixel is modeled by
tewer endmenibers than required. the unmeodeled portian of
the pixel specirua will be partitioned into the resultant frac-
tions. thus increasing the model error for that pixel (Roberts
at ol T9ash). Similarly, the use of too many endmembers 1o
ummix the pixel spectrum will result in fraction errors. caused
by spectral contfusion between these endmembers.

The purpose of this paper is to explare and test the ap-
plicability of an algoritlun utilizing the technique of multiple
endinaember spectral mixture analvsis (MESMA) {Roberts e of.,
1998h) 1o measure the phvsical composition of urban mor-
phology trom a Landsat 151 image. The MESKMA approach
allows the number and tvpe of endmembers to vary for each
pixel incan image. This perniits o larger number of endmem-
burs o be modebed withio o scene. while meeting the con-
siraints concerning the relationship betbweesn the number of
image hands and the maximom number af endmembers that

can be modeled in each pixel. Qur specific objeclives in this
paper arve

o ta demonstrate how MESMA can he utilizod to derive enmpara-
ble physical measures that describe the morpbological charac
teristics of uchan areas: and

@ toassess the utility of MESAMA in the context of an weban envi-
runment by (1} comparing the performance of MESMaA with
that of a slandand sma model. (2 validating endmember frac-
ttoms produced by MESMA models. and [3) showing examples
of how estimated endmember fractions could be related to
patterns of urban morpholosy by applving n model of urhan
material composition developed by Ridd [1995).

Study Site

This stuey was undertaken in Los Angeles County. one of the
mosl ethnically diverse places in the United States (Gordon
and Richardson. 1999). with a total population exceading

9.5 million according to data from the 2000 Census. The loca-
tign af the study area is shown in Figure 1. Tt represents the
metropolitan urbanized region within Los Angeles County,
which covers approximately 3220 square kilometers, almos!
hall of the county's total urea.

The segregation patterns of sthnicity and socioeconomic
elasses in Los Angeles. accompanied by successive waves of
econotic restructuring and populstion expansion. have been
rellected by the buill eavironment and the physical structure
of urhan form within the region (Allen and Torner. 1997).

Li (1948}, comparing arcas in Los Angeles dominated by pop-
ulation groups trom China and Indoching versus those domi-
nated by groups from Taiwan and Hong Kong, showed thal
even the micro-divisions within the same ethnicity have their
peographical expression in the spatial differentiation of urban
landscape. Mullens and Senger {1968). using color-intrared
(CIR] aerial photos. revealed a highly consistent relationship
belween the physical surrogates derived from these phatos
(e.g.. vegetution appearance. vacan! land. lot and home sizes,
pools and patios. streat conditions) and the demographic and
socivecconomic characteristics of urban neighhorhoods in

Los Angeles, Herold ef al, {2002) observed that roof materials
in Califarnia citics are particularly diverse in malerial and
color. and that this diversity is Kkelv to be influenced by

the surronnding tand use and neighhorhood socioeconomic

Figure 1. Location of the study site.
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Figure 2. An wverview of the MESMA approach.

characteristics. Miller and Winer (1984) reported ditferences
in vegelation speciss composition in Los Angeles, nol ouly
batween residential and non-residential areas [c.g., conmimer-
cial. industrial). but also between residential arcas with differ-
ant racial profiles.

Therelore, the diverse social and phyvsical character of
Los Angeles nakes it an ideal stucy site for testing the capa-
hilitv of MESAA for deriving rigorous measures of urban mate-
rial compositions from remote sensing imagery, The temporal
and spatially explicit characteristics of these neasures can
then be utilized to examine the degree lo which variation in
the phvsical settings is connactad to variability in socielal at-
tributes. This can help improve our understanding of urban
morphedogical patterns in that region. and ultimately can aid
in the formalion of pelicy in anticipation of the problems thal
accompany urbanization processes and demopraphic shifts in
that rogion.

Data and Methods

Data

The data utilized in our application of MEsSya included a sub-
set (31713 lines by 4801 samples} frone a Landsal a0 image ac-
quired on 03 September 1990 (path 41, row 36). The acquisi-
tion date of this image corresponds reasonably well to the
1990 U5, Census [taken in April of that vear). In addition to
the multispectral image. we utilized a sel of 1.0-m spatial
resolution aerial photes to aid in the validation of the resul-
tant endmetiber ractions. These photos wers generated [rom
1:12.000-scale color photographs acquired in late 1993 by
LK. Curtis Services. Ine., from an altitude of 2740 m using

arn RC10 aerial survey camera.

Overview of the MESMA Approach
The MESMA approach, originally developed by Roberts ef of.
{1948b}. is based on the concept that, although the spuecira in
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anv individual pixel can be modeled with relatively few end-
menibers, the number and type of endmembers are variable
across an image. In this sense. AMESMMA can be described as a
maoclifiod linear S84 approach in which many simple $x1a
models wre first caleulated for cach pixel in the image. The ob-
jective is then to choose, for every pixel in the image. which
madel among the candidale models provides the best 11t 1o the
pixel specita while producing phyvsically reasonable fractions,
The procedure we followead in applving MESMA to the
study area is summarized in Figure 2. As shiown in the figure.
we started this waltistage process by selecting g sel ol candi-
date endnembers believed to represent a relatively pure spec-
Iral response of the target malerials in the scene. In the next
step. we applicd a series of standard SMA models based on a
variely of possible combinations of the endmembers, such
that the number of cudmembers in anv single model is nof
less than two and not more than the tolal nnmber of imape
bands. The performance of all models at each pixel was evalu-
ated to select the smallest subset of candidate mudels Tor
cvery pixel in the image. A reliable candidate madel is one
that produecss physically realistic fractions (... between
0 percent and 100 percend) and does not exceed a certain
threshold of ereor We then ran wn optimizalion program to
select an optimal model fron the subset of candidate models
previously selected {or each pixel. Finallv, we utilized the
fraction values produced by these optimal modeals to map the
abundance of geuveal land-cover components in the urban
scene and validated the results using the avrial photos. The
procedure is described in more datail Below.

Selection of Endmembers

The sclection of endmembers can be performed in two wavs
[Adams ef ol 1993} by deriving them (1] directly trom the
itnage (image endmembers) or (2) from field or laboratory
spectra of known materialy (refecence endmembers) (seo
Roberls of ol (1948h] Tor a comparisun befwean the Lwo).
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Because of the coarse spectral resolution of the TM image, and
hecause the present analvais uses a single-dale image, we
deemed i more feasihle 1o use image endmembers. Tmage
eudnienbers have the advantage of being collected at the
sante scale as the image and are thus easier to associate with
teatures in the scene.

To select scene elements that represent general categories
of land cover, wu followed the conceptual madel proposed hy
Ridd (1995). Ridd sugaested thal various snbdivisions of
urhan arcas may b deseribed in terms ol proporlions of Vege-
tation (V). Impervious surtuces (1), and Soil (8). Ridd's vis
mode! otters an intuitively appealing link to the spectral mix-
ing problem because the spectral contribration of its three
main lsud-cover conponents can be resolved at the suh-pixel
level nsing the $v1A techaigue. The model was originally ap-
plicd to American cities, but i1 has alsa been Insted with data
fraom Australia [Ward ef af., 2000). Thailand (Madhavan ef of.,
2001}, and Egvpt (Rashed of al.. 2001). The results of these
studies show that the model is rohust in describing the wrban
landscape. although it may be necessary to include an adedi-
Lional component of water or shade to achieve an accurate
characlterization of urban morphology [Rashed et af., 2001).

The process of image endmember selection commenced
by applving the Pixel Purity Index (PP1) method, developed by
Boardman ef wd. (1995) o initiallv screen all the pixels in the
image in teems of their relative purity, The pR1method allo-
cates to each pixel in the image a score based m the number
of limies it is found to occupy a near-vertex position in the re-
peated projections of the r-dimensional data onto a rundomly
oriented vector passing throngh the mean of a dala cloud. The
resulting seore allows reliable identification of | image end-
mermbirs because those pixels that possess wlatlu'l\ pure

spectra will have a high score (e, will be found lePled]\ al
e extremes of the [Ll[d distribution). Qut of the 14.011.347
pixels included in the image. only 2.536 pixels (about 0.018
peccent] were identified as “extremes,” with PP scores rang-
ing from 110 73 (Figure 3a). Only pixels with a PPl score
above the average were then selected as endmember candi-
dates, resulling in a reduction of the total number of extreme
pixels lo 821, This reduced sel of pixels was then divided into
smaller sulysets based on their clustering in the n-dinenston
space. Thess subsets were chosen according to a moditied vis
model that also incorparates waler or shade as a fourth end-
member. A threshold of 50 pixels or mare per group of ¢lus-
ters wis then used to remove dispersed pixels from the selec-
tion. and eight main groups of extrenie pixels were identified.
Finally. the cight groups of extreme pixels were linked to the
imiage Lo delermine theie physical correspondence in the
urban scene (with the ald of aerial photos), and the mean
spectrum of sach group was used as a candidate endmember
for unmixing. The spectral profiles of the final set of candidate
endmembers are shown in Figure 3b, These included:

¢ One enihineber, Shd teluster 1) for the water [the ocean.
lakes) and shade categors.

o Twoecndmembers, Vegl and Veg? (clusters 2 and 3. tespecs
tivelv) for the green veoetation category, Vool corresponded
to urban vegelation found in residential lavwns, pardens. parks,
gulf courses. cemeleries, and shrublands, while Yeu2 was uscd
{or nalural vegetalion located in the coastal sage and chaparral
occupving the lower elevativns of the Santa Monice and
San Gabriel snounlaing, inaddition 1o the oak-grass woodland
localed i the casteon portion of the image. The slight ditler
vmce belween the spectral protiles of these b o vegetalion
endniembers is due to the level of liguid water contenl in nal-
wral green vegetation [Veg2] that is highoer than thal of aeban
vegetation [Vegl].

& Thies endnlewbers, limpl. Imp2. and Imp3 [clusters 1. 5, and
G, respectively). for the impervions surface category, W hlh". the
sposiieal prodiles b these tiest bawo endmembers ollow the
sitoes Lrened. as indicated in Figure 3hothe brighiness values
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Figure 3. (a) Plot showing the results of applying the Pixel

Purity index an the Landsal image. (k] Speclral profiles of
the eighl image endmembers selecled for Ihe analysis.

vary due to differences in the targets they coresponded to in
the nrban seene. Impl was used as an endmember tor parking
lots and dark grav roads. swhereas Imp2 was nsed for grav os-
phalt ronts, red-grav roots. and lipht asphalt roads, The Inp3
endniember has a rather distinct speciral profile because it
carresponded to red tile rools and wood shingle rools,

¢ Two endembers, Soill and Soil2 (clusters 7 and 8. respec-
tively), for the soil catesory, The former correspomded to bare
soil in the urban scone, while the latter corresponded ta
sparsely 1 evetated soils, Obsersed differences in the spectral
prodiles of these two endmembers is a result of the variations
irn the vrganic watler and mineral compounds between (hese
two soil erdmembers,

Generation of SMA Models

Rased on the selected set of candidate endmembers, a sevies of
Saia inodels were identified to nindel the image scene based
on different possible conibinalions between Lthese endniem-
bers. Given the size of the image. and to minimize the compu-
tational time of this process. we restricted the combination ol
enchienibers 1o only be belween the general calesories of land
cover. For example, the two endmembers Vepi and Vep were
not allowead to he used together in any individual model be-
cause they belonged ta the same vegetation category, This rule
resulted ina total of 63 separate mixtire models for each
pixel in the Landsat scene. These models included 23 two-
endmerber models, 28 three-endmember models, and 12
four-endmember models. For each one of these 63 candidate
models. we cmploved an algorithm for spectral unmixing that
was based on the anconsirained modilied Gram-Schmidl
least-squares method (Roherts et of., 1998a), in which frac-
tiong are conslrained to suni to 1 while individual fractions
are allowed to be less than 0 or greater than 1. When this
meathad is applisd to an image consisting of N spectreal bands
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using a number of endmembers less than or cqual to N the
output will be a fraction image for each endmember and an
RMSE image that measures the model's fit. The specific formu-
lation can be found in Adams et @f. (1993), Tompking et al.
(1997), and Roberts ef af, [19984).

Optimization of Model Selection

The purpose of this stage of the analysis was to identify, from
the 63 models produced in the previous stage, the optimal
model for each pixel in the image. A model had the potential
ta be optimal for a pixel if it minimized the RMSE while pro-
viding reasonable (positive and physically meaningful) [rac-
tions for that pixel. Becanse it was possible that more than
one model could meet these criteria tor a pixel, the selection
of optimmal models was conducted in two steps. Tn the first
step, a subset of potential candidate models was selected for
each pixel according to the following criteria:

® A {raction criterion: A model was considered to be a candi-
date for a pixel if it produiced physically reasanable fractions
between —0.03 and 1.05 for thar pixel. A 5 percent error in the
modeled fractions was permitted to allow for noise-gemerated
OrTOTS.

® An RMSE criterion: A wodel was selected if tlhe RMSE was
below a threshold of 0.05.

Based on these two criteria, an algorithm was developed
to screen the fractions and the RMSE results produced by the
63 madels in every pixel in the image. The output of this
process was an lmage consisting of 63 bands. each corre-
spowding to one of the 63 models. In each band, if a inedel
met the {wn criteria for a pixel, that pixel was assigned a
value of 1. Otherwise it was assigned a value of 0.

Inn the second step. the resulting binary fractional bands
were further processed by an optimization program to address
the case when two or more models have met the criteriain a
pixel (i.e.. model overlap). In this case, it becomes necessary
ta choose which model. amoog these candidates, is optimal
for the pixel. We applied an optimization program based on
the classical maximal covering problem originally introduced
by Church and ReVelle (1974). The objective of this optimiza-
tion program was to select a final subset of optimal models
(one per pixel) that minimizes model overlap while maximiz-
ing the number of pixels being correctly modeled in the
imuge. This helped identifv the dominant set of models that
were more likely to have physical correspondence to the
scene than would other spatially fragmented models. The
problem formulation of this optimization program is de-
scriberd in detail in Roberts et af. (1998b). The program was
written to run on the GRID module of the Arc/lnfo G1s software
package,

Validating Fractians

In the final stape of our application of MESMA. the per-pixel
optimal models were used to map the fractional abundance
of the general components of land cover in the urban scene
(i.e.. Vegl und Veg2 endmember fractions were wapped 10 a
vepgetation land-cover class. while Soill and Soil2 fractions
were mapped to a soil land-cover class, and so un). The end
product of this process consisted of four inaps depicting the
spatially varving character of the following land-cover compo-
nents: Vegetation. lmpervious surface, Soil, and Water/Shade.
In addition. a map of KMSE was generated showing pixels of
higher RMSE (=0.05 DN) which could not be imodeled by any
nf the 63 models.,

To assess the accuracy of final fraction maps and te evalu-
ate the robustness of MESMA in the canlext of the urhan envi-
ranment, aerial photos were utilized (o validate the final
results. Despite the growing number of studies un SMA, as-
sessing the accuracy of derived endmember fractions through
direct quantitative methods is a topic that has been remark-
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ably neglected, sith the exception of small number of studies
that have attempted to address this issue, including Small
(2001), Peddle et af. {1949), and Elmore et af. (2000]. The dif-
fculty arises trom the fact that natural surfaces composed of a
single uniform material do not exist in the real world, Even
with human-made materials. factors such as material ugeing.
atmospheric influences, and other human-related activities
have a profound impact on the heterogeneity of urban sur-
faces. This makes it very difficull to find sufficient reference
data that can directly be compared against the continuously
varving surface of endmember fractions generated over large
areas, The alternative solutions are either to compare the
agreement of derived endmember fractions with estimates of
fractions derived independently by another method. or to as-
sess the validity of derived fractions in light of their useful-
ness in providing accurate land-use/land-cover categorical
classification of urban areas. Clearly, the former is difficult to
pursue because none of the currently competing methods has
been proven superior, while the latter defies the objective of
aur research. which is tn describe the continuous naturs of
the urban landscape.

Acknowledging these limitations, we followed a simple
approach to validate endmember tractions through aerial pho-
tos by building upon a procedure described in Peddle et af.
(19949). In this approach. a stratified adaptive cluster sampling
(5A0S) method was used to identify a number of test sites on
the aerial photos. This method was designed to adaptively in-
crease sampling eftorts of observed values that satisty a condi-
tion of interest {(Thompson, 1492). Qur interest hara was to
find “relatively” homogeneous surfaces that woere occuplied by
endmemnbers that belonged to one., and only one. of our four
categories of land cover. This was achieved by applving a
threshold of 0.7, or greater, to fraction images to delineate all
pixels in each image that include at Ieast 70 percent of a sin-
gle endmember. The threshold of 70 percent was arbitrarily
chosen, assuming that when a pixel meets this condition for a
certain fractional value, then it is most likely that this pixel
can be classified under that “crisp” land-cover class. The spa-
tial clusters of delincaled pixels corresponded to urban fea-
tures that were expected to be homogeneous (e.g., park, an air-
part runway, parkiog lot, lake, ete]. From this papulation of
spatially clustered pixels. a random subset of test sites was se-
lected and identified on the aerial photos. The boundaries of
these test sites were digitized on the aerial photos, and areas
of the digitized polvguns were then caleulated to represent the
reference data. For each polvgon. the percentage of corre-
sponding endmember fractions in the pixels was summed up
toindirate the area of the polvgon estimated by MESMAL The
accuracy of each endmember fraction (§) was identified as the
mean of the percentage ahsolute difference between actual
and modeled cover estimates, calculated according to the fol-
lowing equation (Peddle et af., 1999):

u:‘n [1}
A ¥ '

b=

where vy is the area af a test site. o is the area calculated by ac-
cumulating endmember fractions for that site, and n is the
number of test sites identified for each endmember. A total of
16 test sites (four for each land-cover component] were used
in the validation process,

Results and Discussion

Evaluation of SMA Models Performance

The performance of the 83 $Ma models was evaluated in
terins of a madel’s ability to produce lower RMSE values
(<20.03 DN} and physically reasonable fractions for the
largest number of pixels. Table 1 lists these 63 models. the
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TABLE 1.

THE 63 TwC-. THREE-, AND FOUR-EMDMEMBER MODELS LISED IN THE ANALYSIS

Two-Endmetmber Models

Three-Endmeaember Models

Four-Endmermbrr Models

Maodeld  Endmembers Pixels Modeled  Nodel#  Endmembers Pixels Modeled  Model# Endmembers Pixels Modeled
1 Shi. Vegl 142 347 24 Shd. ¥eg1. Imp1 3314 195 52 Shel, Vepl. mpl, 50il1 11 5494 937
2 Shd. veg2 1045 G5 25 Shd. vegl. lmpZ 4 115 168 a3 Shd. vepl. Imp2, 50il1 7 HAG GOB
3 Shd. lmp1 TBOTTR 26 Shl. Vegl. lmp3 2171710 34 Shd. Vegl. Irupd. Seill 10 538 917
1 Shi. lmp2 BGO 4537 27 Shal, Veg1, Seilt 5 TAZ AH0 3R Shd. Vegi Impt, Sail2 724 983
3 Shd. Iup3d 632 062 28 Shd. Vegt, Seil2 6 302 130 56 Shd, Vg1, Imp2, Snil2 2083 702
f Shd. Soill 1228 036 249 Shel, Veg2, Imp1 1 964 924 537 Shd, Vepl. Impa, 50il2 2716 161
7 Shd. sSnilz 3273 691 30 Shd, Veg2. hmp2 1074 4682 58 Shd. Veg2. Imp1, 5nilt 11 538 308
A vingl, Imp1 2061 850 31 shel. Vegz lmp3 1393 240 54 Shil. vegz, lmp2. 5uil) 4200 641
q Vaol, Imp2 5 106 606 32 Shd. Vg2, Soill 6 006 944 U Shd. Vegz. lmip3. Soill 10 607 063

10 Vegl, hnpd $HI4 33 Shd, Vey2. SoilZ 071206 61 Shel. Veg2. Iinpl. Soil2 517 036
11 Viral, Saill 12 493 34 Shel. Tmp1, Soill 4 500 338 fi2 Shd, Vegz. Imp2. Suil2 2 4B 603
12 Vegl, Soil2 155 703 35 Sh. [mpl, Soil2 2t 120 63 Shd. Veg2, Iimpi, Soil2 1 H7T M2
13 Veal, lmp1 1276423 36 Shd. [mp2. S0il1 1929 781
14 Vea2. Imp2 4224 483 37 Shd. lmp2. Soil2 1 476 696
13 Voo, [mpl 2708 38 Shd, lmpd. Soill 1158 487
16 Vg2, Soill 23 193 39 Shil, Imp3. Seilz 1520 938
17 Vi, Soil2 BF GGY 40 Vegl. lmp1, Soill 9824 236
18 Impl. Snill 3483 584 41 Vegl. Imp1, SoilZ 1593 546
10 [mp1. Soil2 337 485 42 Vol Imp2. Soil1 9 806 578
20 lmpz, Soill 2797 658 43 Vegl, Imp2. Suil2 4311 890
21 Imp2, Snil2 1434 251 44 Vegl. liup3. Saill 27034
2? Impd, 50il 3136 43 Vagl, lipd. Sojl2 72771
24 Imp3, Soilz 3514 46 Ves?, Impl, Snill 9 AT71 234
47 Vep?, Impl. Soilz 1133 540
a8 Veg2, Iimp2. Snill 10 112 890
44 Vg, lap2. Soilz 3923 361
30 Viep2, limp3. Soill 11959
51 VeeZ, inpd, Sotlz 33 734

endmembers they vsed. and the actual number of modeled
pixels resulting from each one. A comparison between these
models s shown in Figure 4 in ferms of the percentage of
modeled pixels. In this figure. the performance of individual
two-endamember. threc-endmember. and four-endmember
models is shown in Figures 4a. 4b. and 4c. respectively, while
Figure 4¢ shows performance results of the models when they
are comhined based on the number of endmembers used in
the model. These results demonstrate that no single set of
endmembers can adequately describe the spectra measured by
every pixel in lhe image. However. the more endmembers that
are added to a single model, the better will be the perfor-
mance of that model. For example. no more than 368 percent of
the image was modeled by any one of the 23 two-endmember
maodels. At the same time, several individual three- and four-
endmember models accounted for more than 70 percent of
land cover in the image. Nevertheless, un increase in the num-
ber of endmembers also leads 1o an increase in the overlap be-
tween the models (that is, if a pixel {s correctly modceled by
two or more SMA models), resulting in similar performance
for the combined two-. three-. and four-endmember madels
afler optimization (75 percent. 91 percent, and 86 percent.
respectivelv—Figure 4d).

The effect of model overlap is also illustrated in the
decline in the performance between the combined three-
endmember moedels and the combined four-endmember mod-
els. This suggests that there is a tradeolf bebween the number
of endmembers utilized in the models and the amount of
overlap between the models. Ideally, a better characlerization
of the urban scene would be achieved when the overlap be-
tween models is kept to a minimum so that each model repre-
sents spatially contiguous, potentially meaningful features
across the urban landscape. This also suggests that the losver
RMSE values obtained by the models that utilized four end-
member fractions were not due to an accurate utilization of

s T s 100G

endmernbers. but rather. from the statistical fact that the RMSE
value is guaranteed to decrease whenever a new variable is
added o a regression model. Hence. the optimum model for a
pixel is the one that can correctly model that pixel with a
minimum number of ecndmembers because in this case these
endmembers will likely be physically. rather than statistically,
meaningful.

Our evaluation of model performance (not shown) sug-
gests that a strategy for selecting those oplimal models that
better characterize the urban scene is to minimize the mode!
overlap whenever possible. This can be achieved by starting
with two-endmember models, evaluating these models in
terms of the RSME and fraction criteria, selecting the models
thal meet these criteria with minor overlap, and then. if neces-
sary. appending additional models that incorporate maore end-
members. By adopting this strategy in the oplimization pro-
graimn. uptimul models were assigned to 98.86 percent of the
pixels in the image, The remaining portion of the image (1.14
percent) represented areas with a higher RMSE that could not
be adequately modeled by any of the models. The majority of
lhese areas exisled in the Santa Susanna Mountains. located
in the northwest quadrant of the image.

Analysis of Endmember Fractions

Based on the optimal model selected for each pixel. the abun-
dance of endmember fractions was maepped into the four main
categories of the modified VIS modcl: vegetation, impervious
surface. soil. and water/shade. The maps of these generalized
fractions are shown in Figure 5. Brighter arcas indicate higher
fractional abundance of the endmember category while dd rker
areas indicale lower abundance. These fractions provide
measure of the physical properties of the dominant land COver
categories in the scene, thus helping to reveal the phvsical com-
position of the morphological patterns of the Lus Angeles met-
ropolitan area at the time of image acquisition. For anmpl
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Figure 4. Perfarmance of individual models assessed in terms of the percentage of pixels that met the RMSE and fraction
criteria. The results for individual two-, three., and four-endmember models are shown in {aj,
{dy compares the performance of the models aggregated according to the number of endmembers to the performance of all
models combined together. Results shown in (d) were optimized for maximum area coverage.

{b], and (<), respectively.

the spatial distribution of fractions generally resembles the
classic concentric model of land use. Fractions of impervious
surface are very high in the central business district (CBD) at
the urban core (Figure 3b). Moving cutward in all directions
fram the CBD, the proportion of impervious surface decreases.
Conversely, vegetation and soil fractions [Figures 5a and 3c)
increase as one goes outward fram the core to the periphery,
Whether vegetation ar soil fractions become dominant de-
pends on the ambient environment. Vegetation dominates the
northeast and southwest gquadrants of the scene where the San
Gabriel and the Santa Mouica Maountains are located. respec-
tively. Soil dominates the northwest quadrant of the image
near the Santa Susanna Mountains and in the southeast quad—
rant where some industrial areas are located. Although shade
fractions are highly sensitive to such factors as topographic
effects and solar zenith angle at the time of image acquisition,
ther are still capable of providing us with a reasonabile assess-
ment of features in the scene (Tigure 5d). Besides water bodies
(e.g.. the oeean, lakes), differences in shade abundanece can be
abserved between the CBD wilh its skvscrapers and other resi-
dential areas. between multi-family housing in and around
the urban-core and single-familv housing on the periphery,
and between the different aspects of slope in the mountainous
regions.

PHOTOGRAMMETRIC ENGINEERING & AEMOTE SENSING

In this studv. our primarv objective was to deriva mea-
sures that can be linked in subsequent research with social
variables to describe urban morphological patterns in Los
Angeles. It is, therctore. worthwhile to highlight here some
indications about the potential linkage betwecn variation in
socioeconomic and demographic variables, and the physical
variables as determined by the endmember fractions, The net-
wark of freeways in Lus Angeles acts as a framewaork for the
distribution of endmeniber fractions, and also for linking vari-
ation in these fractions to patterns of ethnicity and socioeco-
nomic segregation in the study area. For example. the non-
Hispanic white population is dominant in neighborhoods that
extend along the periphery, which score high on the sociosco-
namic scale. These areas are charactarized as having relatively
high values of vegetation traction, given a larger share of pri-
vate green spacs (e.g.. golt courses, hame lawns] medium in
impervious surface fractions. and low in shade and soil frac-
tions. The majority of African-American dominated neighbor-
hoods are associated with less affluent areas localed in 1he
urban core between the 405 and the 710 freewavs. These areas
have very low values of vegetation fraction (with the excep-
tion of public green spaces such as parks and school vards),
high values of shade and impervious surface fractions, and
relatively higher soil fractions, This increase in soil fraction
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(d)

Figure 5. Images produced by mapping endmember fractions from per-pixel optimal models to the four main companents of
urban land covers: (a) Vegetation, (b} Impervious Surface, (c) Saill, and (d} Water/Shade. Brighter areas indicate higher abun-

dance while darker areas indicate lower abundance.

values indicates a degroe of instability associated with recon-
struction und development activities that took place in some
of these areas in 1890 at the time of image acquisition. Like-
wise, the Hispanic populalion is largely concentrated in the
central region. which extends along [nlerstates 10 and 5. to
the San Gabriel Vallev in the east and the San Fernando
Vallev in the north. The sociveconomic status of these neigh-
borhoods ranges fram low to middle as do the fractions of
vagetation. impervious surface. and shade (the latter two are
inversely related to the socioeconomic status of the areas).

Fractlon Validatlon Results

The accuracy of MESMA fractions was assessed by comparing
the accumulated fraction estimates in relatively homogenenus
land-cover components to other estimates derived from the
higher resolution aerial photos. We deemed this appreach suf-
ficient because. for mast applications. one would be {nterested
in the aggregation of fraction measures over well-defined re-
gions (e.g.. census tracts, ecological fields), rather than the
fractions of an individual pixel. Table 2 shows the resulis
from a comparison of the areal coverage of "reference™ homo-
geneous features obtained from acrial photos, with the area of
corresponding features on the image scene caleulated through
the accumulation of the fractions that were obtained from
MESMa. The results indicate that there is good agreement
between the measures calculated from the fructions and the
agrial-photo-derived estimates tor all the four land-cover
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components. Both vegetation and soil fractions had the small-
est total mean difference from the reference data aggregated
over the test sites. The accuracy of impervious surface frac-
tions was slightlv lower, while water fractions had the lowss
accuracy, These nverall accuracy results are also consistent
with the individual results by site.

The standard deviation values calculated for each class of
land cover provide a complementary reasure to assess agree-
ment between reference estimates and MESMa fractions, If
MESMA models were consistently overeslimating or underesti-
mating the aclual areal coverage of a cerlain class. the distrib-
ution of the accumulated fraction estimates for that class
would be consistently different from the distribution of the es-
timates derived from the aerial photos. Therefore, the overall
standard deviation values calculated in Table 2 for the four
components strengthen the assertion that the distribution of
fraction eslimates are consistent with the distribution of corre-
sponding aerial-photo-based estimates,

Indeed. we recognize thal there is a considerable degree
of uncertainty associated with the validation exercise de-
scribed here. This uncertainty is a product of the flaws and
biases resulting from the selection of homogeneous test sites
used lor the comparisan, and from the error associated with
the estimation of the areal coverage of these sites from aerial
phaotas, Theretore, the validation exercise described above
is obviously incomplete and should be thought of as a first
step tuward a more strongly quantitative verification of the
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AESKA-tlerived fractions, Nevertheless, the preliminary re-
sults of this pxercise suggest that it is passible ta quantifv the
guneral lamd-cover components shaping the phesical strocture
al urhan morphology frony multispectral images with medinm
spatial resolution. The resulis also conflirm that KESNA is 10-
bust and well suited to provide measures that appropriately
tlescribe the phvsical composition at urhan morphology,

Summary and Conclusions

In this paper, we described an approach for measuring the
phivsical compaosition of urban morphology from medium res-
olution multispectral satellite images using a multiple end-
member spectral mixture analyvsis (VEsMA) The technigue
Lz the potential tor providing a direct measure ol the basic
elements that comprise the morphology of the ¢itv throngh a
process ol pixel-unique endmember selection. based on an op-
tinization technique that minhuizes model overlap. We tested
this approach in the urban context of Los Anseles County—an
area with diverse phyvsical and social settings that are rapidly
changing due 1o range of complex. interrelated forces ot ur-
banivation that are not vet well understood. Using MESK A we
showed that two- and thres-endmember models can provide
better separulion of urban materials than can tour-endmember
madels because of reduced model overlap. We mapped the
darived endmember fractions into towr geocral components of
urban land cover and demonstrated how these [ractions can
e linked to the spatial patterns that axist in the roeglon by
cthnicity and sociocconomic class.

It has been suggested that urban morphologe is “the phvs-
ical appearance of social reality” (Pesaresi and Bianchin,
2001. p. 36). The potential of MESAMA to contribute to urban
morphological analvsis liss in its ability to quantifv the physi-
cal composition of urban areas cocasioned by human activiny
al different geopgraphic seales. This serves as an imape-derived
proxy for human hehavior taking place on the ground that we
might not otherwise be able to measure, The research pre-
sented herein is & work in progress and we recognize that
there are limitations inthe results. Speciticallv, we recognizae
the necd o adopt o more rigorous method (o validiote MESKMA

PHCTGGRAMMETRIC ENGINEERING & REMOTE SENSING

results based on simultaneovsly acguired, high-resolution
hvperspectral imagery with coincident field measurement.
However, U aln of this paper is to illustrate the capahility of
MESALA Tor providing wavs of generating phvsically menning-
ful estimates ol urbun morphology thal are not measurable by
other means. [ future rescarch, we will explore in more de-
tail how these remotely sensed measuras can be linkad with
sacio-demographic variables to reveal different morphalogical
patterns of human settlements in large cities.
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