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Abstract 
The application of multiple en dm eiub er spec tral mixture 
ana lysis (MJ::SA1A) to map the ph ysical com pos ition of urban 
morphology using Landsat Thematic Mapp er (TM) data is 
evaluated and tested. MESMA models mixed pixels as lin ear 
com binations of pure spec tra, called en dm em bers, while 
allowing the types and number of endmembers to V(]l}' on a 
per-pixe l basis. A total of 63 two-, three -, and [our-endm ember
models were applied to a Landsat Tlvl image for Los Angeles 
County. an d a sm aller subset of these models was chosen 
based on f raction and root-m ean-squared error (R,VlSE) crite­
ria. From this subset, an optimal model was selected for each 
pixel based on optim iza tion for m ax im um area coverage. The 
resultant endm ember frac tions were then ma pped into four 
main com ponents of urban land cover: vegetation, Imp ervious 
surfaces, Soil, and \1\fateriShade. The mapped frac tions were 
validated using aerial pho tos. The results sho wed that a ma­
jority of the image could be modeled successfull y with two- or 
three-etidtnember m odels. The validation results indicated the 
robustness of MESMlI for deriving spatially con tin uous vari­
ables qu antif ied at the sub-p ixel level. These para meters can 
be readily integrated into a wide range ofapplications and 
m odels concerned with physical, econom ic, and/or socio­
dem ographi c phenom ena that influence the m orphological 
pa tterns of the city. 

 

Introduction 
i\ recur re n t th eme in urban remote se nsing studies has been 
how to der ive sum mary indicators of physical components of 
urban morph olo gy from remotely sen se d dat a (Green . 1955; 
Forster. 1985; Ridd . 1995; Jen sen and Cowen . '\999). Th is typ e 
of analys is has tradition ally be en limited due to the spectra l 
heterogeneit y of urban features in re lation to th e spatial reso­
lution of th e remote sens ing sen sors (Weber. 1994 ). This is 
es pec ia lly tru e in th e contex t of mult isp ectral images with 
medium sp atia l resolut ion suc h as th ose provided by Landsat , 
SPOT , and the Indian sat ell ites. Becaus e of th e presence of 
spectral mixing in th e p ixe ls of these images. th e identi fica­
tion of urb an land cov er using per- pixel an alyti cal techn iqu es 
becom es very diffi cult because the con tin uum of land cover 
cannot be readi ly di vided in to d iscr ete cla sses. 
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Strah ler et al. (1986) d ivid e scene mo dels into two types, 
I-l- an d L-resolu tion mod els, de pen d ing on the relat ion ship 
bet ween th e s ize of e leme nts (e.g.. vegela tion) in the scene 
and th e resolut ion ce ll of th e sensor. In the H-resol ut ion 
model. scene elements ar e larger than res olu tion ce lls and, 
th erefore. th e spa tia l arr angement of scen e elements can 
di rectly be detected . Th e L-reso lut ion mode l is th e opposite . 
w her e sce ne e lements ar e not indi viduall y delect abl e becau se 
th ey ar e smaller than th e reso lution ce lls. Detect in g the spa tial 
arran gement of objects may require a resolution ce ll s ize sev­
era l times sm all er than th ei r s ize. Accordingly. for multispec­
tral images w ith medium spatia l res olut ion . th e sc ene mod el 
o f urba n lan dscap es can be regarde d as an L-resolu lion mod el. 
Further, as th e si ze of objects in th e urban scene beco mes in ­
cr easingly sm all re lative to th e resolution cell si ze , it may no 
longer be possibl e to con sider objec ts in dividuall y (Strah ler 
et al.. 198 6). Instead , the ur ban sc ene model can be rega rde d 
as a contin uous mo de l, in wh ich the measurem ent of eac h 
pi xel can be treated as a sum of sp ect ral interacti on s between 
vari ou s scene eleme nts weight ed by th ei r concentra tio n or 
relat ive aeria l p roportions with in th e reso lution cell (i.e. , a 
mi xture model) . The re fore . it can be asser ted th at , in the con­
text of medium reso lution multi sp ect ral images, H-resolution 
mod els in urb an areas sh ould operate in a subservient role to 
L-resolution models (Graet z, 1990; Rash ed et al .. 200 1; Phinn 
et 01.• 2002 ). 

Over th e past ten yea rs , there has been a trend toward de­
scribin g the spatially var ying char acte r of land cov er in terms 
of co ntinuous surfaces (Mather, 1999) . Thro ugh thi s trend. th e 
pro porti ons of different co mpone n ts of land cov er are esti­
mated for eac h p ixe l of th e image. Fuzzy classifi cati on and 
sp ectra l mi xt ure ana lysi s (S MA) are two grou ps of techniques 
that have been pro pose d to provide soft analysi s of mixed 
pixels. The work we pr esent in thi s pa per is based on th e SMA 
approach . The SMA approach assumes that a lan dscape is 
formed from continuously va rying proportions of id ealized 
types of land covel' with pure sp ect ra . called en c! members 
(Adams et al.. 1986; Ad am s et al.. 1993). Endmemb ers are 
abstrac tions of land-cover materials with uniform properti es 
pr esent in th e sc ene. In an urban enviro nme nt. these may 
include im pervio us sur faces , vege ta tion typ es . wat er bodi es , 
and bar e soi ls (Ridd, 1995). Linea r SMA is th e proces s of so lv­
in g for endmember fracti on s, assuming that th e s pectru m 
measured for ea ch pixel represen ts a linear combination of 
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enrhuomhor slwctra that corresponds to the physical mixture 
of surlac« components weighted by their areal abundance. Al­
though nonlinear mixing can be important for some types of 
analvsis. the effects of multiple scattering in the majority of 
SrvL'\ applications are assumed to be negligible (Roberts et a1.. 
1998a: Mather. 1999). 

Manv SMA applications have been applied to multispec­
tral imagerv in non-urban environments (e.g., Roberts et a1.. 
1mlsb; Rogan et al., 2002). but some recent studies have indi­
cated the feasibility of this technique in urban environments 
(e.g.. Ward et a1.. 2000; Madhavan et 01.,2001: Rashed ct ol., 
200 I; Small. 2001; Phinn et 01.,2002: Wu and Murrav, 2003). 
Findings from these studies indicate that a classification of 
the urban scene based on SMA-derived measures may be supe­
rior to ot her traditional per-pixel classifications tcchniquos. 
However. they also show a higher degree ofRMS error associ­
ated with these models (Ward et 01.,2000; Rashed et 01.. 2001; 
Small, 20tH). This is because the standard SMi\ model imple­
ments an in variable set of endmembers to model the spectra 
in all the pixels within an image. The assumption fails to ac­
count for the fact that. due to the diversitv of urban materials. 
the number and type of components within the field of view 
are variable. For example, the endmembers required to de­
scribe the central business district of a citv are different than 
those roquirnd to describe single family residential districts or 
urban recreational areas. In addition, if a pixel is modeled by 
fewer endinembers than required, the unmodeled portion of 
the pixel spectrum will be partitioned into the resultant frac­
tions, thus increasing the model error for that pixel (Roberts 
et 01., 1995b). Simi lar!v, the use of too many endmembers to 
unmix the pixel spectrum will result in fraction errors, caused 
by spectral confusion between these endmembers. 

The purpose of this paper is to exp lore and test the ap­
plicabilitv of an algorithm utilizing the technique of multiple 
endmember spectral mixture analysis (MESMA) (Roberts et 01., 
1998b) to measure the physical composition of urban mor­
phologv from a Landsat 'I'M image. The MESM,'\ approach 
allows the number and type of endmembers to vary for each 
pixel in an imagu. This permits a largor number of endmem­
bel'S to be modeled within a scene, while meeting the con­
straints concerning the rolationship between the number of 
image bands and till) maximum number of endmembers that 

can be modeled in each pixel. Our specific objectives in this 
paper are 

•	 to demonstrate how MESMA can be utilized to derive cornpara­
hlo physical measures that describe the morpbological ch arar­
teristics of urban areas: and 

•	 to assess the utilitv of MESMA in the context of an urban envi­
ronment by (1) compar.ing the performance of MESMA with 
that of a standard SMA model, (2) validating endmember frac­
tions produced by MESMA models, and [3) showing examples 
of how estimated endmember fractions could be related to 
patterns of urban morphology by applying a model of urban 
material composition developed by Ridd (1995). 

Study Site 
This study was undertaken in Los Angeles County, one of the 
most ethnically diverse places in the United States (Gordon 
and Richardson, 1999), with a total population exceeding 
9.5 million according to data from the 2000 Census. The loca­
tion of the study area is shown in Figure 1. It represents the 
metropolitan urbanized region within Los Angeles County, 
which covers approximately 3220 square kilometers, almost 
half of the countv's total area. 

The segregation patterns of ethnicity and socioeconomic 
classes in Los Angeles, accompanied by successive waves of 
economic restructuring and population expansion. have been 
reflected by the built environment and the physical structure 
of urban form within the region (Allen and Turner, 1997). 
Li (1998), comparing areas in Los Angeles dominated by pop­
ulation groups from China and Indochina versus those domi­
nated by groups from Taiwan and Hong Kong. showed that 
even the micro-divisions within the same ethnicity have their 
geographical expression in the spatial differentiation of urban 
landscape. Mullens and Senger (1969). using color-infrared 
(elR) aerial photos, revealed a highly consistent relationship 
between the physical surrogates derived from these photos 
(e.g., vegetation appearance, vacant land, lot and home sizes, 
pools and patios, street conditions) and the demographic and 
socioeconomic characteristics of urban neighborhoods in 
Los Angeles. Herold et 01. (2002) observed that roof materials 
in California cities are particularly diverse in material and 
color, and that this diversity is likely to be influenced by 
the surrounding land use and neighborhood socioeconomic 

Figure 1. Location of the study site. 
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Figure 2. An overview of the MESMA approach. 

characteristics. Miller and Winer (1984) reported differences 
in vegetation species composition in Los Angeles. not only 
between residential and non-residential areas [o.g., commer­
cial. industrial), but also between residential areas with differ­
ent racial profiles. 

Therefore, the d ivorso social and physical character of 
Los Angeles makes it an ideal study site for testing the capa­
bility of MESMA for deriving rigorous measures of urban mate­
rial compositions from remote sensing imagery. The temporal 
and spatially explicit characteristics of these measures can 
then be utilized to examine the degree to which variation in 
the physical settings is connected to variability in societal at­
tributes. This can help improve our undnrstanding of urban 
morphological patterns in that region, and ultimately can aid 
in the formation of policy in anticipation of the problems that 
accompany urbanization processes and demographic shifts in 
that region. 

Data and Methods 
Data 
The data utilized in our application of MESMA inr.ludnd a sub­
set (a i 13 lines by 4801 samples) from a Landsat TM image ac­
quired on 03 September 1990 (path 41, row 36). The acquisi­
tion date of this image corresponds reasonably well to the 
1990 U.S. Census (taken in April of that year). In addition to 
the multispectral image, we utilized a set of 1.0-m spatial 
resolution aerial photos to aid in the validation of the resul­
tant endmember fractions. These photos were generated from 
1:12,000-sr:ale color photographs acquired in late 1993 by 
I.K. Curtis Services. Inc., from an altiturle of 2740 musing 
an RCI0 aerial survey camera. 

Overview of the MESMA Approach 
The MESMA approach, originally developed by Roberts et 01. 
(1998b), is based on the concept that, although the spectra in 
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any individual pixel can be modeled with relativelv few end­
members, the number and type of endmembcrs are variable 
across an image. In this sense, MESMA can be described as a 
modified linear SMA approach in which many simple SMA 
models are first calculated for each pixel in tho image. The ob­
jective is then to choose, for every pixel in the image. which 
model among the candidate models provides the best fit to the 
pixel spectra while producing physically reasonable fractions. 

The procedure we followed in applying MESMA to the 
study area is summarized in Figure 2. As shown in the figure, 
we started this multistage process by selecting a set of candi­
date rmdmembers believed to represent a relatively pure spec­
tral response of the targut materials in the scene. In the next 
stop, we applied a series of standard SMA models based on a 
variety of possible combinations of the endmembers. such 
that the number of enclmembers in any single model is not 
less than two and not more than the total number of image 
bands. The performance of all models at each pixel was evalu­
ated to select the smallest subset of candidate models for 
evnry pixel in the image. A reliable candidate model is one 
that produces physically realistic fractions [i.u., between 
o percent and 100 percent) and does not exceed a certain 
threshold of error, We then ran an optimization program to 
select an optimal model from the subset of candidate models 
previously selected for each pixel. Finally, we utilized the 
fraction values produced by these optimal models to map the 
abundance of general land-cover components in the urban 
scene and validated the results using the aerial photos. The 
procedure is described in more detail below. 

Selection of Endmembers 
Th8 selection of endrnambers can be performed in two ways 
(Adams et 01.,1993): by deriving them (1) directly from the 
image (image endmernbers] or (2) from field or laboratory 
spectra of known materials (referenc8 endmembsrs] (see 
Roberts et 01. (1998b) for a comparison between the two). 
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Because of the coarse spectral resolution of the 'I'M image, and 
because the present analysis uses a single-date image, we 
deemed it more feasible to use image endmembers. Image 
endmembers have the advantage of being collected at the 
same scale as the image and are thus easier to associate with 
features in the scene. 

To select scene elements that represent general categories 
of land cover, we followed the conceptual model proposed by 
Ridd (1995). Ridd suggested that various subdivisions of 
urban areas may be described in terms of proportions of Vege­
tation (V), Impervious surfaces (I), and Soil (S). Ridd's VIS 
model offers an intuitivelv appealing link to the spectral mix­
ing problem because the spectral contribution of its three 
main land-cover components can be resolved at the sub-pixel 
level using the SMA technique. The model was originally ap­
plied to American cities, but it has also been tested with data 
from Australia (Ward et 01., 2000), Thailand (Madhavan et 01., 
2001), and Egypt (Rashed et 01.,2001). The results of these 
studies show that the model is robust in describing the urban 
landscape, although it may be necessary to include an addi­
tional component of water or shade to achieve an accurate 
characterization of urban morphology (Rashed et 01.. 2001). 

The process of image endmember selection commenced 
by applying the Pixel Purity Index (ppJ) method, developed by 
Boardman et 01. (1995) to initially screen all the pixels in the 
image in terms of their relative purity. The PPI method allo­
cates to each pixel in the image a score based on the number 
of times it is found to occupy a near-vertex position in the re­
peated projections of the n-dimensional data onto a randomly 
oriented vector passing through the mean of a data cloud. The 
resulting score allows reliable identification of image end­
members because those pixels that possess relatively pure 
spectra will have a high score (i.e., will be found repeatedly at 
the extremes of the data distribution). Out of the 14,011,347 
pixels included in the image, only 2,536 pixels (about 0.018 
percent) were identified as "extremes," with PPI scores rang­
ing from 1 to 73 (Figure 3a). Only pixels with a PPI score 
above the average were then selected as endmember candi­
dates, resulting in a reduction of the total number of extreme 
pixels to 821. This reduced set of pixels was then divided into 
smaller subsets based on their clustering in the n-dimension 
space. These subsets were chosen according to a modified VIS 
model that also incorporates water or shade as a fourth end­
member. A threshold of 50 pixels or more per group of clus­
ters was then used to remove dispersed pixels from the selec­
tion, and eight main groups of extreme pixels were identified. 
Finally, the eight groups of extreme pixels were linked to the 
image to determine their physical correspondence in the 
urban scene (with the aid of aerial photos), and the mean 
spectrum of each group was used as a candidate endmember 
for unmixing. The spectral profiles of the final set of candidate 
endmembers are shown in Figure 3b. These included: 

•	 One endmember. Shd (cluster 1), for the water (the ocean, 
lakes) and shade category. 

•	 Two endmembers, Veg1 and VegZ (clusters Zand 3. respec­
tively), for the green vegetation category. Vog l corresponded 
to urban vegetation found in residential lawns, gardens. parks, 
golf courses, cemeteries, and shrublands. while VegZ was used 
for natural vegetation located in the coastal sage and chaparral 
occupying the lower elevations of the Santa Monica and 
San Gabriel mountains, in addition to the oak-grass woodland 
located in the eastern portion of the image. The slight differ­
ence between the spectral profiles of these two vegetation 
endrnembers is due to the level of liquid water content in nat­
ural green vegetation (VegZ) that is higher than that of urban 
veg()tation (Veg1). 

•	 Three endmembers, Imp1, Impz, and Imp3 (clusters 4,5, and 
(i, respectively), for the impervious surface category. While the 
spectral profiles of these first two endmcmbers follow the 
same trend, as indicated in Figure 3b, the brightness values 

(b) 

Figure 3. (a) Plot showing the results of applying the Pixel 
Purity Index on the Landsat image. (b) Spectral profiles of 
the eight image endmembers selected for the analysis. 
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vary due to differences in the targets they corresponded to in 
the urban scene. Imp l was used as an endmember for parking 
lots and dark gray roads, whereas lmpz was used for gray as­
phalt roofs, red-gray roofs, and light asphalt roads. The Imp3 
endmernber has a rather distinct spectral profile because it 
corresponded to red tile roofs and wood shingle roofs. 

•	 Two endmembers, Soil l and SoilZ (clusters 7 and S. respec­
tively), for the soil category. The former corresponded to bare 
soil in the urban SC(1I1e, while the lattor corresponded to 
sparsely vegetated soils. Observed differences in the spectral 
profiles of these two endmembers is a result of the variations 
in the organic matter and mineral compounds between these 
two soil endmembers. 

Generation of SMA Models 
Based on the selected set of candidate endmembers, a series of 
SMA models were identified to model the image scene based 
on different possible combinations between these endmem­
bers. Given the size of the image, and to minimize the compu­
tational time of this process, we restricted the combination of 
endmembers to only be between the general categories of land 
cover. For example, the two endmembers Veg1 and Veg2 were 
not allowed to be used together in any individual model be­
cause they belonged to the same vegetation category. This rule 
resulted in a total of 63 separate mixture models for each 
pixel in the Landsat scene. These models included 23 two­
endmember models, 28 three-endmcmber models, and 12 
four-endmember models. For each one of these 63 candidate 
models, we employed an algorithm for spectral unmixing that 
was based on the unconstrained modified Gram-Schmidt 
least-squares method (Roberts et 01., 1998a), in which frac­
tions are constrained to sum to 1 while individual fractions 
are allowed to be less than 0 or greater than 1. When this 
method is applied to an image consisting of N spectral bands 
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using a number of endmembers less than or equal to N, the 
output will be a fraction image for each endmember and an 
RMSE image that measures the model's fit. The specific formu­
lation can be found in Adams et 01. (1993), Tompkins et 01. 
(1997), and Roberts et 01. (1998a). 

Optimization of Model Selection 
The purpose of this stage of the analysis was to identify, from 
the 63 models produced in the previous stage, the optimal 
model for each pixel in the image. A model had the potential 
to be optimal for a pixel if it minimized the RMSE while pro­
viding reasonable (positive and physically meaningful) frac­
tions for that pixel. Because it was possible that more than 
one model could meet these criteria for a pixel, the selection 
of optimal models was conducted in two steps. In the first 
step, a subset of potential candidate models was selected for 
each pixel according to the following criteria: 

•	 A fraction criterion: A model was considered to be a candi­
date for a pixel if it produced physically reasonable fractions 
between -0.05 and 1.05 for that pixel. A 5 percent error in the 
modeled fractions was permitted to allow for noise-generated 
errors. 

•	 An RMSE criterion: A model was selected if the RMSE was 
below a threshold of 0.05. 

Based on these two criteria, an algorithm was developed 
to screen the fractions and the RMSE results produced bv the 
63 models in every pixel in the image. The output of this 
process was an image consisting of 63 bands, each corre­
sponding to one of the 63 models. In each band, if a model 
met the two criteria for a pixel, that pixel was assigned a 
value of 1. Otherwise it was assigned a value of o. 

In the second step, the resulting binary fractional bands 
were further processed by an optimization program to address 
the case when two or more models have met the criteria in a 
pixel (i.e., model overlap). In this case, it becomes necessary 
to choose which model. among these candidates, is optimal 
for the pixel. We applied an optimization program based on 
the classical maximal covering problem originally introduced 
by Church and ReVelle (1974). The objective of this optimiza­
tion program was to select a final subset of optimal models 
(one per pixel) that minimizes model overlap while maximiz­
ing the number of pixels being correctly modeled in the 
image. This helped identify the dominant set of models that 
were more likely to have physical correspondence to the 
scene than would other spatially fragmented models. The 
problem formulation of this optimization program is de­
scribed in detail in Roberts et 01. (1998b). The program was 
written to run on the GRID module of the ArclInfo GIS software 
package. 

Validating Fractions 
In the final stage of our application of MESMA. the per-pixel 
optimal models were used to map the fractional abundance 
of the general components of land cover in the urban scene 
(i.e., Vegl and Veg2 endmember fractions were mapped to a 
vegetation land-cover class, while Soill and Soil2 fractions 
were mapped to a soil land-cover class, and so on). The end 
product of this process consisted of four maps depicting the 
spatially varying character of the following land-cover compo­
nents: Vegetation, Impervious surface, Soil, and Water/Shade. 
In addition. a map of RMSE was generated showing pixels of 
higher RMSE (>0.05 DN) which could not be modeled by any 
of the 63 models. 

To assess the accuracy of final fraction maps and to evalu­
ate the robustness of MESMA in the context of the urban envi­
ronment. aerial photos were utilized to validate the final 
results. Despite the growing number of studies on SMA, as­
sessing the accuracy of derived endmember fractions through 
direct quantitative methods is a topic that has been remark­

ably neglected, with the exception of small number of studies 
that have attempted to address this issue, including Small 
(2001), Peddle et 01. (1999), and Elmore et 01. (2000). The dif­
ficulty arises from the fact that natural surfaces composed of a 
single uniform material do not exist in the real world. Even 
with human-made materials, factors such as material ageing, 
atmospheric influences, and other human-related activities 
have a profound impact on the heterogeneity of urban sur­
faces. This makes it verv difficult to find sufficient reference 
data that can directly b~ compared against the continuously 
varying surface of endmember fractions generated over large 
areas. The alternative solutions are either to compare the 
agreement of derived endmember fractions with estimates of 
fractions derived independently by another method, or to as­
sess the validity of derived fractions in light of their useful­
ness in providing accurate land-use/land-cover categorical 
classification of urban areas. Clearly, the former is difficult to 
pursue because none of the currently competing methods has 
been proven superior, while the latter defies the objective of 
our research, which is to describe the continuous nature of 
the urban landscape. 

Acknowledging these limitations, we followed a simple 
approach to validate endmember fractions through aerial pho­
tos by building upon a procedure described in Peddle et 01. 
(1999). In this approach, a stratified adaptive cluster sampling 
(SACS) method was used to identify a number of test sites on 
the aerial photos. This method was designed to adaptively in­
crease sampling efforts of observed values that satisfy a condi­
tion of interest (Thompson, 1992). Our interest here was to 
find "relatively" homogeneous surfaces that were occupied by 
endmembers that belonged to one, and only one, of our four 
categories of land cover. This was achieved by applying a 
threshold of 0.7, or greater, to fraction images to delineate all 
pixels in each image that include at least 70 percent of a sin­
gle endmember. The threshold of 70 percent was arbitrarily 
chosen, assuming that when a pixel meets this condition for a 
certain fractional value, then it is most likely that this pixel 
can be classified under that "crisp" land-cover class. The spa­
tial clusters of delineated pixels corresponded to urban fea­
tures that were expected to be homogeneous (e.g., park, an air­
port runway, parking lot, lake, etc). From this population of 
spatially clustered pixels, a random subset of test sites was se­
lected and identified on the aerial photos. The boundaries of 
these test sites were digitized on the aerial photos, and areas 
of the digitized polygons were then calculated to represent the 
reference data. For each polygon, the percentage of corre­
sponding endmember fractions in the pixels was summed up 
to indicate the area of the polygon estimated by MESMA. The 
accuracv of each endmember fraction (0) was identified as the 
mean of the percentage absolute difference between actual 
and modeled cover estimates, calculated according to the fol­
lowing equation (Peddle et 01.,1999): 

0=L 1'1 ~ u1jn	 (1) 

where 'I is the area of a test site, cr is the area calculated by ac­
cumulating endmember fractions for that site, and n is the 
number of test sites identified for each endmember. A total of 
16 test sites (four for each land-cover component) were used 
in the validation process. 

Results and Discussion 
Evaluation ofSMA Models Performance 
The performance of the 63 SMA models was evaluated in 
terms of a model's ability to produce lower RMSE values 
«0.05 ON) and physically reasonable fractions for the 
largest number of pixels. Table 1 lists these 63 models, the 
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TABLE 1. THE 63 Two-. THREE-, AND FOUR-ENDMEMBER MODELS USED IN THE ANALYSIS 

Two-Endmcmbor Models Three-Endmember Models Four-Endmember Models 

Model# Endmembers Pixels Modeled Model# Endmembers Pixels Modeled Model# Endmernbers Pixels Modeled 

1 Shd. Veg1 1 692 347 24 Shd, Veg1. Imp1 3318195 52 Shd, Veg!. Imp1, Soil1 11 594 957 
2 Shd. Veg2 1 095 685 25 Shd, Veg1. Imp2 4115168 53 Shd. Veg!. Imp2, Soil1 7 836 608 
3 Shd.Tmp l 780773 26 Shd, Vegl. Imp3 2171 710 54 Shd. Veg'l, Imp3. Soil1 10538917 
4 Shd.Imp2 860 357 27 Shd, Vegl. Soil1 5 732 480 55 Shd, Vegl, Impl, Soil2 724 983 
5 Shd.Imp3 642062 28 Shd. Vegl. Soil2 6 502 150 56 Shd, Vegl. Imp2, Soil2 3 083 792 
6 Shd.Soil1 1 228036 29 Slid. Veg2. Imp1 1 964 924 57 Shd, Vegl, Imp3, Soil2 2 716 161 
7 Shd. Soil2 3275691 30 Slid. Veg2. Imp2 3074462 58 Shd, Veg2, Impl, Soil1 11 538 398 
8 Vegl.Impl 2061 850 31 Shd. Veg2. Imp3 1 393 240 59 Shd, Veg2, Imp2. Soill 8209641 
9 Vegl,Imp2 5 106 606 32 Slid. Vegz. Soi ll 6006944 60 Shd, Veg2, Imp3, Soill 10 607 065 

10 VegtTrnpa 5834 33 Shd, Veg2, Soil2 507126 61 Shd, Veg2. Imp l , Soil2 517 036 
11 Veg1, Soill 12493 34 Shd. ImpI . Soil1 4800338 62 Shd, Veg2. Imp2, Soil2 2 461 663 
12 
13 

Veg I . Soil2 
Veg2. 1mpt 

155 703 
1278423 

35 
3l) 

Shd. ImpI , Soil2 
Shd. Imp2, Soill 

426 120 
1 929 78! 

63 Shd, Vegz , Imp3, SoiI2 1 877092 

14 Veg2.Imp2 4 224 485 37 Shd. Imp2, Soil2 1 476696 
15 Veg2.Imp3 2708 38 Shd. Imp3, Soil1 1 158487 
16 Veg2. Soil1 23 193 39 Shd. Imp3. Soil2 1 529 938 
17 Veg2, Soil2 87669 40 Veg I. Imp], Soill 9 824 236 
18 Irnp l . Soi l l 3484584 41 Vegl , Imp l , Soil2 1 593 546 
19 Imp], Soil2 357485 42 Vegl, Imp2. Soil! 9806578 
20 Imp2, Soill 2 797 658 43 Veg], Impz. Soil2 4 31'[ 990 
21 Irnpz. Soil2 1 334 251 44 Veg l , Imp3, Soil1 27034 
22 Imp3, Soil1 3136 45 Vegl, Imp3, Soil2 72771 
23 Imp3, Soil2 3514 46 Veg2, Imp I , Soill 9571 234 

47 Veg2. Imp t , Soil2 1 153 540 
48 Veg2, Imp2, Soill 10 112 890 
49 Veg2, Imp2. Soil2 3923361 
50 Veg2, Imp3. Soill 41959 
51 Veg2, Imp3. Soil2 35 734 

endmembers thev used, and the actual number of modeled 
pixels resulting {rom each one. A comparison between these 
models is shown in Figure 4 in terms of the percentage of 
modeled pixels. In this figure, the performance of individual 
two-endmernber, three-endmember, and four-endmember 
models is shown in Figures 4a, 4b. and 4c, respectively, while 
Figure 4d shows performance results of the models when they 
are combined based on the number of endmembers used in 
the model. These results demonstrate that no single set of 
endmembers can adequately describe the spectra measured by 
every pixel in the image. However, the more endmembers that 
are added to a single model, the better will be the perfor­
mance of that model. For example, no more than 36 percent of 
the image was modeled by anyone of the 23 two-endmember 
models. At the same time, several individual three- and four­
endmember models accounted for more than 70 percent of 
land cover in the image. Nevertheless, an increase in the num­
ber of endmembers also leads to an increase in the overlap be­
tween the models (that is, if a pixel is correctly modeled by 
two or more SMA models), resulting in similar performance 
for the combined two-, three-, and four-endmember models 
after optimization (75 percent, 91 percent, and 86 percent, 
respectively-Figure 4d). 

The effect of model overlap is also illustrated in the 
decline in the performance between the combined three­
endrnember models and the combined four-endmember mod­
els. This suggests that there is a tradeoff between the number 
of endmembers utilized in the models and the amount of 
overlap between the models. Ideally, a better characterization 
of the urban scene would be achieved when the overlap be­
tween models is kept to a minimum so that each model repre­
sents spatially contiguous, potentially meaningful features 
across the urban landscape. This also suggests that the lower 
RMSE values obtained by the models that utilized four end­
member fractions were not due to an accurate utilization of 

endmembers, but rather, from the statistical fact that the RMSE 
value is guaranteed to decrease whenever a new variable is 
added to a regression model. Hence, the optimum model for a 
pixel is the one that can correctly model that pixel with a 
minimum number of endmembers because in this case these 
endmembers will likely be physically, rather than statistically, 
meaningful. 

Our evaluation of model performance (not shown) sug­
gests that a strategy for selecting those optimal models that 
better characterize the urban scene is to minimize the model 
overlap whenever possible. This can be achieved by starting 
with two-endmember models, evaluating these models in 
terms of the RSME and fraction criteria, selecting the models 
that meet these criteria with minor overlap, and then, if neces­
sary, appending additional models that incorporate more end­
members. By adopting this strategy in the optimization pro­
gram, optimal models were assigned to 98.86 percent of the 
pixels in the image. The remaining portion of the image (1.14 
percent) represented areas with a higher RMSE that could not 
be adequately modeled by any of the models. The majority of 
these areas existed in the Santa Susanna Mountains, located 
in the northwest quadrant of the image. 

Analysis ofEndmember Fractions 
Based on the optimal model selected for each pixel, the abun­
dance of endmember fractions was mapped into the four main 
categories ofthe modified VIS model: vegetation, impervious 
surface, soil, and water/shade. The maps of these generalized 
fractions are shown in Figure 5. Brighter areas indicate higher 
fractional abundance of the endrnember category while darker 
areas indicate lower abundance. These fractions provide a 
measure of the physical properties ofthe dominant land-cover 
categories in the scene, thus helping to reveal the physical com­
position of the morphological patterns of the Los Angeles met­
ropolitan area at the time of image acquisition. For example, 
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Figure 4. Performance of individual models assessed in terms of the percentage of pixels that met the RMSE and fraction 
criteria. The results for individual two-, three-, and four-endmember models are shown in (a), (b), and (c), respectively. 
(d) compares the performance of the models aggregated according to the number of endmembers to the performance of all 
models combined together. Results shown in (d) were optimized for maximum area coverage. 
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the spatial distribution of fractions generally resembles the 
classic concentric model of land use. Fractions of impervious 
surface are very high in the central business district (CBD) at 
the urban core (Figure 5b). Moving outward in all directions 
from the CBD, the proportion of impervious surface decreases. 
Conversely, vegetation and soil fractions (Figures 5a and 5c) 
increase as one goes outward from the core to the periphery. 
Whether vegetation or soil fractions become dominant de­
pends on the ambient environment. Vegetation dominates the 
northeast and southwest quadrants of the scene where the San 
Gabriel and the Santa Monica Mountains are located, respec­
tively. Soil dominates the northwest quadrant of the image 
near the Santa Susanna Mountains and in the southeast quad­
rant where some industrial areas are located. Although shade 
fractions are highly sensitive to such factors as topographic 
effects and solar zenith angle at the time of image acquisition, 
they are still capable of providing us with a reasonable assess­
ment of features in the scene (Figure 5d). Besides water bodies 
(e.g., the ocean, lakes), differences in shade abundance can be 
observed between the CBD with its skyscrapers and other resi­
dential areas, between multi-family housing in and around 
the urban-core and single-family housing on the periphery, 
and between the different aspects of slope in the mountainous 
regions. 

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 

In this study, our primary objective was to derive mea­
sures that can be linked in subsequent research with social 
variables to describe urban morphological patterns in Los 
Angeles. It is, therefore, worthwhile to highlight here some 
indications about the potential linkage between variation in 
socioeconomic and demographic variables, and the physical 
variables as determined by the endmember fractions. The net­
work of freeways in Los Angeles acts as a framework for the 
distribution of endmember fractions, and also for linking vari­
ation in these fractions to patterns of ethnicity and socioeco­
nomic segregation in the study area. For example, the non­
Hispanic white population is dominant in neighborhoods that 
extend along the periphery, which score high on the socioeco­
nomic scale. These areas are characterized as having relatively 
high values of vegetation fraction, given a larger share of pri­
vate green space (e.g., golf courses, home lawns), medium in 
impervious surface fractions, and low in shade and soil frac­
tions. The majority of African-American dominated neighbor­
hoods are associated with less affluent areas located in the 
urban core between the 405 and the 710 freeways. These areas 
have very low values of vegetation fraction (with the excep­
tion of public green spaces such as parks and school yards), 
high values of shade and impervious surface fractions, and 
relatively higher soil fractions. This increase in soil fraction 
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Figure 5. Images produced by mapping endmember fractions from per-pixel optimal models to the four main components of 
urban land covers: (a) Vegetation, (b) Impervious Surface, (c) Soil, and (d) Water/Shade. Brighter areas indicate higher abun­
dance while darker areas indicate lower abundance. 

(d) 

values indicates a degree of instability associated with recon­
struction and development activities that took place in some 
of these areas in 1990 at the time of image acquisition. Like­
wise, the Hispanic population is largely concentrated in the 
central region. which extends along Interstates 10 and 5, to 
the San Gabriel Vallev in the east and the San Fernando 
Valley in the north. The socioeconomic status of these neigh­
borhoods ranges from low to middle as do the fractions of 
vegetation, impervious surface, and shade (the latter two are 
inversely related to the socioeconomic status of the areas). 

Fraction Validation Results 
The accuracy of MESMA fractions was assessed by comparing 
the accumulated fraction estimates in relatively homogeneous 
land-cover components to other estimates derived from the 
higher resolution aerial photos. We deemed this approach suf­
ficient because, for most applications, one would be interested 
in the aggregation of fraction measures over well-defined re­
gions (e.g.. census tracts, ecological fields), rather than the 
fractions of an individual pixel. Table 2 shows the results 
from a comparison of the areal coverage of "reference" homo­
geneous features obtained from aerial photos, with the area of 
corresponding features on the image scene calculated through 
the accumulation of the fractions that were obtained from 
MESMA. The results indicate that there is good agreement 
between the measures calculated from the fractions and the 
aerial-photo-derived estimates for all the four land-cover 

components. Both vegetation and soil fractions had the small­
est total mean difference from the reference data aggregated 
over the test sites. The accuracy of impervious surface frac­
tions was slightly lower, while water fractions had the lowest 
accuracv. These overall accuracv results are also consistent 
with the individual results by site. 

The standard deviation values calculated for each class of 
land cover provide a complementary measure to assess agree­
ment between reference estimates and MESMA fractions. If 
MESMA models were consistently overestimating or underesti­
mating the actual areal coverage of a certain class, the distrib­
ution of the accumulated fraction estimates for that class 
would be consistentlv different from the distribution of the es­
timates derived fromOthe aerial photos. Therefore. the overall 
standard deviation values calculated in Table 2 for the four 
components strengthen the assertion that the distribution of 
fraction estimates are consistent with the distribution of corre­
sponding aerial-photo-based estimates. 

Indeed. we recognize that there is a considerable degree 
of uncertainty associated with the validation exercise de­
scribed here. This uncertainty is a product of the flaws and 
biases resulting from the selection of homogeneous test sites 
used for the comparison, and from the error associated with 
the estimation of the areal coverage of these sites from aerial 
photos. Therefore, the validation exercise described above 
is obviously incomplete and should be thought of as a first 
step toward a more strongly quantitative verification of the 
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TABLE 2. DIFFERENCES BETWEEN ESTIMATES OF MESMA ACCUMULATED FRACTIONS AND AERIAL-PHOTO-DERIVED ESTIMATES. Y AND 'T ARE IN SQUARE METERS.
 

,'i VALUES ARE CALCULATED ACCORDING TO THE AVERAGE PERCENTAGE OF THE ABSOLUTE DIFFERENCES IN AREAL COVERAGE (NO UNITS),
 

WITH A MAXIMUM POSSIBLE VALUE OF 1
 

Fraction 

Vegetation 

Reference' 
y 

Acr.nmn lutud
 
Fractions 'T
 Iy - (TI 

Iy - ITI 
y Std 

Sito l 242500 2:151Hl 7:J18.75 0.031 
Site2 211 250 244 350 :n 100 0.135 0.066 0.04fl 
Site:1 325 000 33li 71:J 11712.5 0.035 
Sitc4 1034375 104975 70 sou 0.064 

Impervious Surface 
Sitel 101875 102~1J:j 387.5 0.004 
Site2 1 743 125 1 8li9 581 126456.3 0.06H 0.082 0.065 
Sit,';J 25000 29 H13 48t2.5 0.161 
Site4 718 750 7~]4 419 75 (-)fiS.73 0.095 

Soil 
Sitl't 128 125 13H 544 1041H.7:i 0.075 
Site2 125 000 132 0] 9 7018.75 0.053 0.OB6 0.022 
Site3 302500 333 225 30725 0.092 
Site4 1321250 265 175 5li 075 0.044 

Water/Shade 
Sitel 310 625 267 525 43 100 0.161 
Sit,,2 298125 304425 li:JOO 0.021 0.145 0.184 
Site3 279375 469631 190256.3 0.405 
Site4 450000 455 006 5006.25 0.0] 1 

MESl'vL\-derived fractions. Nevertheless, the preliminary re­
sults of this exercise suggest that it is possible to quantify the 
gemmal land-cover components shaping the phvsical structure 
of urban morphologv from multispectral images with medium 
spatial resolution, The results also confirm that MESMA is ro­
bust and well suited to provide measures that appropriately 
describe the physical composition of urban morphology, 

Summary and Conclusions 
In this paper, we described an approach for measuring the 
phvsical composition of urban morphology from medium rns­
olution multispectral satellite images using a multiple end­
member spectral mixture analysis (MESMA), The technique 
has the potential for providing a direct measure of the basic 
elements that comprise the morphology of the city through a 
pro1.8SS of pixel-unique endmember selection, based on an op­
timization technique that minimizes model ovorlnp. \V8 t8st8d 
this approach in the urban context of Los Angeles County-an 
area with divnrso physical and social settings that are rapidly 
changing due to a rang8 of complex, interrelated forces of ur­
banization that are not yet well understood, Using MESMA, we 
showed that two- and three-endmember models can provide 
better separation of urban materials than can four-cndmcrnbor 
models because of reduced model overlap, \Ve mapped the 
derived endmembor fractions into four gen8rall.omponents of 
urban land cover and demonstrated how these fractions can 
be linked to the spatial patterns that exist in the region by 
etlmicitv and socioeconomic class, 

It has been suggested that urban morphology is "the phys­
ical appearance of social reality" (Pesaresi and Bianchin, 
2001, p, 5G). The potential of MESMi\ to cnntributo to urban 
morphological analysis lies in its abi litv to quantifv tho physi­
cal composition of urban areas ocr.asioned by human activity 
at different geographic scales. This serves as an image-derived 
proxy for human behavior taking place on the ground that we 
might not otherwise be able to measure. The research pre­
sented herein is a work in progrp.ss and we recognize that 
there are limitations in the results. Specifically, we recognize 
the need to adopt a more rigorous method to validate MESMA 

results based on simultaneouslv acquired, high-resolution 
hyperspectral imagery with coincident field measurement. 
However, the aim of this paper is to illustrate the capability of 
ME SMA for providing ways of generating physically mouning­
ful estimates of urban morphology that are not measurable by 
other means. In future research, we will explore in more de­
tail how these remote Iv sensed measures can be linked with 
socio-demographic variabl()s to reveal different morphological 
pnttorns of human settlements in large cities. 
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