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-Abstract 

This paper examines the feasibility of spectral mixture analysis (SMA) in deriving comparable physical 
measures of urban land cover that describe the morphological characteristics of cities. SMA offers a way of 
analyzing satellite imagery of urban areas that may be superior to more standard methods of classification. 
Mixing models are based on the assumption that the remotely measured spectrum of a given pixel can be 
modeledas a combination ofpure spectra, called endmembers. SMA, usingfour image endmembers (vegetation, 
impervious surface, soil, and shade), was applied to an IRS-] C multispectral image in order to extract measures 
that describe the anatomy of the Greater Cairo region, Egypt, in terms ofendmember fractions. The resulting 
fractions were then used to classify the urban scene into eight classes of natural and human-built features
 
through a decision tree (DT) classifier. The accuracy ofthe DT classification was compared to the accuracies
 
of two per-pixel supervised classifications of the IRS-IC image employing maximum likelihood (ML) and
 
minimum distance-to-means (MDM) classifiers. Overall KAPPA accuracies were 0.88for the DTclassification
 
based on SMA fractions, and 0.60 and 0.45 for the classifications conducted through ML and MDM respectively.
 

Introduction	 confirms the preoccupation with creating this kind of "hard" 
land-use/land-cover classification from imagery. In some 
cases, the delimitation of land cover and land use types is the 
goal of the analysis (Bams1ey and Barr, 1996; Ryherd and 
Woodcock, 1996; Berberoglu et al., 1999; Bibby and 
Shepherd, 1999; Couloigner and Ranchin, 2000). In others, 
the classification is considered as an intermediate step toward 
examining such phenomena as energy and moisture flux 
(Deguchi and Sugio, 1994), urban change (Chen et al., 2000; 
Ward et al., 2000), and urban heat islands (Lo et al., 1997; 
Quattrochi et al., 2000), or toward developing empirical 
models to estimate biophysical, demographic, and 
socioeconomic variables (Lo, 1995; Thomson and Hardin, 
2000). 

In spite of accomplishments in these applications, the 
accuracy with which urban land-use/land-cover classification 
may be derived from RS data using conventional, per-pixel 
techniques is often judged to be too low for operational use 
(Wilkinson, 1996; Foody, 1999). This is especially true in 

How to describe patterns of the urban landscape is a 
fundamental question that has attracted the attention of 
geographers, ecologists, and other scientists interested in 
various urban phenomena. The traditional approach to 
addressing this question has been based on adopting a 
classification scheme by which the urban fabric is logically 
arranged in systems of discrete objects based on observable 
characteristics (Jensen et al., 1983). As remotely sensed 
(RS) data have become increasingly incorporated in urban 
analyses, this approach has not significantly deviated from 
its classical origins. Rather, users of RS data have often 
seemed to maintain what Mather (1999, pp. 7) calls a "hard 
classification" view. That is, the world is viewed as a set of 
contiguous rectangular pixels, each of which is allowed to 
have only a single label representing one discrete land use or 
land cover category (Mather, 1999). 

A review of the limited literature on urban remote sensing 
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the context of multispectral images with medium spatial 
resolution such as those provided by Landsat TM, SPOT, 
and Indian satellites. Several reasons may be cited for why 
the "hard" classification approach limits the potential of 
remote sensing as a research tool for urban analysis. In this 
paper. however, we focus our attention on two main 
observations that are evident in the literature. The first 
concerns the classification schemes being adopted in the 
analysis of urban imagery, while the second is directly 
related to the nature of urban landscapes. 

The first observation is that the majority of currently 
available classification schemes ;do not provide a clear 
distinction between land cover aild land use (Ridd, 1995; 
Ward et al., 2000). Ridd (1995, pp. 2165) notes that "success 
[in classification] is typically measured by the ability to 
match spectral signatures to the Anderson classification 
which. in the urban arena, is simply land use". This creates 
problems because land use is an abstract concept-a 
combination of economic, social, and cultural factors that is 
defined in terms of function rather than physical 
characteristics (Barr and Barnsley, 2000). Yet, to compare 
urban systems, whether between cities or even between 
various districts within a particular city, comparable 
descriptive parameters are required. RS imagery can only 
record land cover, which describes the physical state of 
features in urban lands (e.g., vegetation types, water bodies). 
Thus, land cover is more objectively measured than land 
use, which cannot directly be linked to RS data and is prone 
to interpretation error because different users will have 
different perspectives on the classification procedure 
(Anderson et al., 1976). One way to overcome this problem 
is to base the measures on biological and physical structures 
of urban landscapes because these measures do not depend 
on human interpretation, nor are they influenced by such 
criteria as the economic development of the city (Ridd, 
1995). 

The second observation concerning the limitations 
imposed by "hard" classification techniques on urban remote 
sensing applications is directly related to the nature of urban 
landscapes (see Jensen and Cowen, 1999, for a more 
comprehensive discussion of urban landscape characteristics). 
One ofthe most important characteristics is the heterogeneity 
of urban features in relation to the spatial resolution of the 
sensor (Weber, 1994). Because the urban environment 
includes a complex mix of natural and human-built urban 
features often interwoven with one another, there is a need to 
deal with a complex mixture of spectral responses (Forster, 
1985). With the presence of spectral mixing in the pixels of 
available satellite images, the identification of land cover 
using per-pixel classification techniques becomes very 
difficult since the continuum of land cover cannot be divided 
readily into discrete classes as required by the "hard" 
classification view. More recently there has been a move 
toward a "softer" way of describing the spatially varying 
character of land cover in terms of probability surfaces 
(Mather, 1999). In the "soft classification" approach, each 
pixel is assigned a class membership probability for each 

land cover type, representing it as a continuous surface of 
variation. Fuzzy classification and spectral mixture analysis 
(SMA) are two families of techniques designed to provide a 
"soft" classification of mixed pixels. The basic difference 
between them is that SMA is based on a physical model of 
the mixture of discrete spectral response patterns (Roberts et 
al.,	 1998a), thus providing a deterministic method to 
addressing the spectral mixing problem rather than relying 
on statistical methods as in the case of the fuzzy approach 
(Mather, 1999). 

In this paper, we present a replicable procedure to analyze 
the anatomy of cities using spectral mixture analysis (SMA) 
of multispectral images with medium spatial resolution. The 
present study represents part of a larger ongoing project 
undertaken by the International Population Center at San 
Diego State University and is directed toward applying remote 
sensing and GIS techniques to the analysis of demographic 
processes in Arab cities. We have favored the use of SMA 
over fuzzy classification techniques because it better serves 
our purpose of deriving standardized and comparable RS 
measures that can be utilized with census data in a GIS to 
study demographic dynamics in the Greater Cairo region, 
Egypt. Our specific objectives in this paper are as follows: 
(1)	 Establish the feasibility of SMA in deriving comparable 

physical measures of urban land cover that describe the 
morphological characteristics of the study site; and 

(2)	 Compare the accuracy of land-use/land-cover 
classifications derived by two different approaches. In 
the first, two conventional per-pixel classifiers 
(maximum likelihood and minimum distance-to-means) 
are applied directly to an IRS-lC multispectral image of 
the study area. In the second approach, an SMA model 
is first applied to the image and the model output is then 
used to derive a discrete land-use/land-cover 
classification for the study area through a decision tree 
classifier. We hypothesize that the second approach in 
which "hard" classification techniques operate in a 
subservient role to "soft" classification techniques may 
be more accurate (and hence more effective) than a 
direct per-pixel classification of the imagery. 

Background 

A Scene Model of Urban Land Cover Composition 
In general, extracting information from RS data can be 

accomplished by the use of models that involve the earth's 
surface (the scene model), the atmosphere that lies between 
it and the spacecraft (the atmosphere model), and the image­
forming sensors on board the spacecraft (the sensor model) 
(Graetz, 1990). Therefore, a discussion of a remote sensing 
scene model of urban landscapes can only be made with 
reference to a particular sensor model and how it produces 
the measurements that structure the image. Our discussion 
of the urban scene model is based on its relation to 
multispectral remote sensors with medium spatial resolutions 
such as IRS-lC (24m), SPOT (20m), and Landsat TM (30m). 

Strahler et al. (1986) divide scene models into two types, 
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H- and L- resolution models, depending on the relationship
between the size of elements (e.g., vegetation) in the scene
and the resolution cell of the sensor. In the H-resolution
model, scene elements are larger than resolution cells, and
therefore the spatial arrangement of scene elements can 
directly be detected. The L-resolution model is the opposite,
where scene elements are not individually detectable because
they are smaller than the resolution cells. Detecting the 
spatial arrangement of objects may require a resolution cell 
size several times smaller than their size. Accordingly, for 
multispectral images with medium spatial resolution, the 
scene model of urban landscapes/can be regarded as an L­
resolution model. Further, as the;~ize of objects in the urban
scene becomes increasingly small relative to the resolution 
cell size, it may no longer be possible to consider objects 
individually (Strahler et al., 1986). Instead, the urban scene
model can be regarded as a continuous model, in which the 
measurement of each pixel can be treated as a sum of 
spectral interactions between various scene elements
weighted by their concentration or relati ve aerial proportions 
within the resolution cell (i.e., a mixture model). 

The implication of this reasoning is significant because it 
determines a new pathway for using RS imagery in the 
analysis of urban landscapes. Even though H-resolution 
models have been dominating urban remote sensing analyses 
for decades, they have a reduced role to play in the inference 
of urban structures (Graetz, 1990). Rather, it can be asserted 
that H-resolution models in future urban applications will 
operate in a subservient role to L-resolution models-an 
approach that we attempt to test in this study. 

 
 
 
 

 
 

 

 

 

Spectral Mixture Analysis (SMA) 
The past few years have witnessed an increasing use of 

SMA within the remote sensing community (Adams et al., 
1986; Adams et al., 1993; Novo and Shimabukuro, 1994; 
Tompkins et al., 1997; Gross and Schott, 1998; Roberts et 
al., 1998b; Mather, 1999; Peddle et al., 1999). The majority 
of SMA applications have been directed toward the natural 
environment. However, SMA has obvious applications to 
the urban environment. The advantage of SMA over 
traditional classification techniques lies in two major areas 
(Roberts et al., 1998a): (I) SMA conforms well to the scene 
model because it is a physically based model that transforms 
radiance or reflectance values to physical variables that are 
linked to the sub-pixel abundance of endmembers within 
each pixel, and (2) SMA provides quantitative results that 
can be incorporated into models of the processes governing 
the distribution of materials within the urban scene. 

Mixing models are based on the assumption that the 
landscape is formed from continuously varying proportions 
of idealized types of land cover with pure spectra, called 
endmembers. Endmembers are features recognizable in the 
scene as being abstractions of land cover materials with 
uniform properties. The pure spectra of endmembers can be 
measured in the laboratory, in the field, or extracted from the 
image itself. In an urban environment, these may include 
impervious surfaces, vegetation covers, water bodies, and 

- bare soils (Ridd, 1995). Through SMA, the areal fractions of 
the endmembers are quantified at the sub-pixel level, allowing 
the inference of the morphological characteristics of an 
urban landscape in terms of endmember composition. Linear 
SMA is the process of solving for endmember fractions, 
assuming that the spectrum measured for each pixel represents 
a Jinear combination ofendmember spectra that corresponds 
to the physical mixture of some components on the surface 
weighted by surface abundance (Tompkins et al., 1997). 
Spectral mixture of endmembers also has the potential to 
become nonlinear (i.e., when radiations interact with more 
than one component). Although nonlinear mixing can become 
significant for some types of analysis, the effects of multiple 
scattering in the majority of applications are assumed to be 
negligible (Roberts et al., 1998a; Mather, 1999; Lillesand 
and Kiefer, 2000). The analysis and results presented here 
are based on the assumption of linear mixing. Assuming a 
linear mixing helps establish a direct link between SMA and 
Ridd's (1995) conceptual model of urban landscape 
composition which we utilize to guide our analysis. 

-The Study Area and Data 

The selected area of study is the metropolitan area of 
Cairo, Egypt, and its surroundings (Figure I). The area 
covers 22.9 km X 22.2 km, encompassing major parts of the 
governorates of Cairo and Giza. The Nile forms the 
administrative division between these two governorates, with 
Cairo on the east bank of the river and Giza on the west bank. 
The area includes a variety of land uses associated with a 
complex mix of land cover. The Mukatim desert occupies 
the southern part of the scene whereas the northern part 
includes a green belt comprising agricultural fields that are 
continuously being intruded by urbanization. The urbanized 
areas are located at the center of the scene. In these areas, 
residential use is often mixed with commercial, public, and 
sometimes "light" industrial uses within the same block. 
However, variations can easily be observed by the naked eye 
between: (a) higher social status residential areas (sites I to 4 
in Figure 1) with low population density (6,300 people/ 
km'); (b) lower social status residential areas (sites 7 to 11) 
with high density (44,800 people/); (c) the central business 
district (CBD) of the capital (site 5); and (d) newly developed 
lands (site 6). 

Two satellite images have been used in our analysis. The 
first is an Indian Remote Sensing multispectral image (IRS­
IC LISS-III) acquired on June 12th, 1996 covering three 
bands in VNIR (520-590, 620-690 and 770-860 nm - 23.6 m 
spatial resolution), and one band in SWIR (1550-1700 nm ­
70.8 m spatial resolution). The second is a panchromatic 
image acquired from the same sensor on June 26th, 1998, 
which covers a spectral range between 500 and 750 nm at 10 
m spatial resolution. While the SMA primarily relied upon 
the multispectral image, the panchromatic image was utilized 
in conjunction with a polygon coverage for the 1996 land 
use survey of Cairo for the selection of test sites used for 
assessing the accuracy of the final classification. 



Methods 

SMA or th~ IRS -rc Mu ltJspectrai lmag~ 

The SMA approach is summarized in Figure 2, The 
analysis begins with the selection of a set of endroembers. 
followed by applying an SMA model in order to estimate 
encmember fractions , A good model is one that produces 
physically realistic fractions (i.e.• between 0% and 100%) 
and measures of error less than a certain threshold (e.g.• 
RMS < 5 ON). That may not happen if the model uses an 
improper set of endmembers (e.g.• the exclusion of an 
endmember which is representedin the scene. or the addition 
of an end member which is not ~pre sented) . In such a case. 
the selection ofendmembers would have to be refined , This 
process is repeated unti l the optimum set of endmembers is 
identified. Finally . a dire ct analy sis of the fraction s or 
classification is conducted accordi ng to the purpose of the 
application. 

Successful SMA application relies on the acc uracy of 
endmember se lection. If the endmembers are incorrect in 
the physical sense, then the fractional abundances are 
also incorrect and the resul ts of SMA beco me meaningless. 
The se lec tion of endmembers can be done in two ways 
(Adams r r al .• 1993): ( 1) by deriv ing them directly from 
the image (image rndmemhers). or (2) from field or 
l abora to ry spec t ra of kn own materials (reference 
endmembers) (see Robert s er ai., 1998a for a comparison 
betwee n the two). In the present study, we have relied 
exclusively upon image endmembers extracted from the 
IRS image for two reasons. First, the study is exploratory 
in nature and only utilizes . single-date image. Second, 

Flgu~ 1	 Sllellile image for rnelropo litln Cairo and ill surrou ndings. 
Tbe numbers show diffeMIIl aspectl of the urban scene (see 
lul for discus li oo ) 

,
 

we did not have reference endmembers collect ed from the 
study area in Cairo at the time of research. 

The conceptual model sel ec ted to extract image 
endmembers from the RS data is Ridd ' s VIS model (Ridd, 
1995). The VIS model represen ts the composition of an 
urban environment as a linear combinatio n of three types 
of land cover. namel y green Vege tat ion. Impervious 
surfaces, and bare Soi l. Ju st as soils may be described in 
terms of their proportions of salt, silt, and clay usin g the 
traditional triangular diagram, so various subdivis ions of 
urban areas may be described in terms of proportions of 
vegetation. soil . and impervious surface (Figure 3). Ridd 's 
VIS model provides an intuitive link to the spectral mix ing 
problem. because the spec tral contribution of its three 
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main components can be resolved at the sub-pixel level 
usi ng the SMA technique. The model was originally 
introduced with reference 10 the contemporary urban realm 
of American cities, but has been tested in other urban 
areas such as Queensland, Australia (Ward et ai.; 2000) 
and the Bangkok metropolitan area in Thailand (Madhavan 
et ai., 2001). The findings of the se studies confirm that 
the model exhibits a general applicability to various cities. 
However, for those cities that differ in their urban fab ric 
from that of the American cities, the model may require 
an additional co mponent (e.g., shade) 10 achieve a better 
characterization of their morp}:)blogical patterns. 

Image end.members were se~ using the Pixel Purity 
Index (PPI) (Boardman er al.; 1995). The PPI method 
allocates to each pixel a score based on the number of times 
it is found to occupy a near-vertex position in the repeated 
projections of the a-dimensional data onto a randomly­
oriented vector passing through the mean of a data cloud. 
1be resulting score helps identify image endmembers because 
those pixels that hold pure spectra will have a high score 
(i.e., will be found repeatedly at the extremes of the data 
distribution). The final five endmembe rs selected for our 
data included two endmemben for bare-soil, and one each 
for vegetation, impervious surface, and shade. Two 
end.members were required to represent bare-soil in order to 
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ensure having representative soil endmembers for the diverse 
land cover of the study area (i.e.•desert soil, agricultural soil 
and urban soil). Figure 4 shows the spectral profiles of these 
endmembers and their location s on a 20 scatter plot (red! 
NIR). 

Having identified representative endmembers, a computer 
program including a linear unmixing code was applied to the 
multispectral IRS-I C image. In this code. we employed the 
unconstrained Modified Gram-Schmidt least square method 
(Roberts et al., 1998a), in which fractions are constrained to 
sum to 1 while individual fractions are allowed to be less 
than 0 or greater than 1. Given a mixture and a set of 
endmembers, the Gram-Schmidt method attempts to solve 
for the fractions through a series of linear equations. The 
specific formulation can be found in Adams et al, (1993). 
Tompkins et al. (1997), and Roberts et al. ( 1998a). When the 
equations are applied to an image consisting of N spectral 
bands using a number of endmembers less than or equal to 
N, the output is a fraction image for each endmember and 
some measure of fit. 

We examined four SMA models: a 3-endmember model 
of vegetation. impervious surface, and bare-soil#l ; a 3­
end.member model of vegetation. impervious surface, and 
bare-soil#2 ; a 4-endmembermodel ofvegetation, impervious 
surface. bare-soilet , and shade; and finally , a 4-endmember 
model of vegetation. impervious surface, bare-soil#2 , and 
shade. The impervious surface endmember represented the 
average spectrum of tile roofs and asphalt (i.e., few "big" 
buildings and wide roads were identifiable from the image). 
1be shade endmemberwas used in our analysis as an indicator 
of building heights-a factor that appears to be significant in 
characterizing the morphological patterns of Cairo. A water 
endmemberwas used as a surrogate for a pure shade spectrum 
since both water and shade exhibit the same characteristics 
of dark objects in the visible spectrum. 

Model fit. as discussed earlier, was assessed in terms of 
IWO criteria: (I ) whether the fractions provide realistic 
abundance and (2) in an error term. The error term was 
expressed as a root-mean-square (RMS) error, which provides 
an estimate of the average error calculated for each pixel 
across all bands using the following equation : 

(I 

where N is the number of bands €IAand represents a residual 
term calculated for each pixel i at wavelength A. as follows: 

~ =RIA -t-..tX!mi	 (2) - , 
where R iA is the mixed spectru m (e.g. ON, radiance, 
reflectance) of the pixel i at wavelength A,and TILt is the pure 
spectral response of an endmember m (of total endmembers 
M) at wavelength A,weighted by the fractional abundance of 
the endmember!... within that pixel. 

•
 



Classification 
Experiments were carried out in order to examine the 

basic hypothesis that SMA-derived fractions provide a way 
to classify the urban scene better than other conventional 
per-pixel classification methods. To do so, the urban scene 
of the study area was classified using three different 
algorithms. The first classification applied a decision tree 
(DT) classifier (Hansen et al., 1996; Friedl and Brodley, 
1997) using endmember fractions and calculated RMS errors 
as input. A tree was constructed in S-plus software by 
recursively partitioning the dataset into purer. more 
homogeneous subsets using a measure called deviance (i.e.• 
a likelihood ratio statistic) to compare all possible splits of 
the data in order to find one split that maximizes the 
dissimilarity among resulting subsets. The resultant tree 
represented hierarchical. nonlinear relationships within the 
data. composed of a root (representing the first splitting rule 
with the maximum deviance), a set of nodes (representing 
the internal splits), and a set of leaves (representing various 
classes at the terminal nodes). The robustness of the resultant 
tree was examined in terms of a residual mean deviance and 
misclassification error rate of the tree (number of 
misclassified points/total number of points) which indicate 
whether or not the training samples used in creating the tree 
are representative. Finally, the splitting rules of the resultant 
tree were entered in a separate classification program applied 
to the SMA output. 

The other two classifications applied maximum likelihood 
(ML) and minimum distance-to-means (MDM) supervised 
classifiers (currently implemented in ERDAS Imagine 
software) to the original multispectral image bands. We 
chose these two techniques because the literature indicates 
that they have frequently been used in the classification of 
urban areas. In the three cases. the scene was classified into 
8 target classes, namely: desert (DS); water body (WB) 
which includes the Nile River and its tributaries; active 
agricultural areas (AG); urban parks and recreation areas 
(UG); residential areas with higher social-status (HC); 
residential areas with lower social-status (LC); the central 
business district (BD); and newly developed lands (DL). 
These classes, particularly the last four, correspond to the 
long-term objective ofour project concerning the analysis of 
demographic dynamics in the region. 

The same training sites were used for all three classifiers 
so that the final results could be compared. The approach we 
followed to select the training samples was based on the 
"guided clustering" steps suggested by Bauer et al. (1994). 
and currently adopted by the GAP analysis program (Lillesand 
and Kiefer, 2000). The approach is very efficient in the 
urban context because it allows the analyst to delineate 
numerous training sets that are not perfectly homogeneous 
for each class in a scene. The following steps summarize the 
guided clustering approach (Bauer et al., 1994; Lillesand 
and Kiefer. 2000): 
I.	 Delineate "initial" training areas for a target class X from 

the multispectral image. 
2.	 Cluster all pixels of class X into spectral subclasses 

XI, ......Xn using ISODATA automated clustering 
algorithm. 

3.	 Examine resultant subclasses and merge or delete 
signatures as appropriate. 

4.	 Repeat steps 1 to 3 for the rest of the 8 target classes. 
5.	 Perform maximum-likelihood classification using all 

spectral subclasses on the entire image. 
6.	 Aggregate (RECODE) subclasses back to the original 8 

target classes. 
7.	 Select "final" training sites from the original multispectral 

image by utilizing information from the classified image 
produced in step 6 in conjunction with the land use 
coverage of the study area. The total number of points 
selected for the final training sample was 1,589 with an 
average of 175 to 200 points for each of the 8 classes. 

Accuracy Assessment 
An accuracy assessment process was conducted to 

quantitatively compare the DT based classification of SMA 
output bands to ML and MDM classifications of the original 
image bands. We used a number of test sites that were 
collected independently from the training samples used in 
the classifications. Using the panchromatic image of the 
study site, in combination with our familiarity with the area, 
a total sample of 1,424 points was identified as test sites for 
the 8 classes (each class contained between 160-190 points). 
These sites were further checked against information provided 
by the digital land-use coverage for the study area to ensure 
their correctness. As with the training sites, the same test 
sites were used in the accuracy assessment of the 
classification. 

The final step was to build a confusion (or error) matrix 
for each of the three classified images. The confusion matrix 
expresses the relationship between the pixels assigned to a 
particular class by a classification algorithm relative to the 
actual class as verified in the test sample. This provides an 
effective means to represent the accuracy of the classification 
because the accuracy of each class is clearly described in the 
matrix, along with errors of inclusion (commission errors) 
and errors of exclusion (omission errors) (Jensen, 1996). 
The omission error indicates the probability that a test pixel 
is correctly classified, while the commission error indicates 
the probability that a pixel classified on the image actually 
represents that class on the ground. The overall accuracy of 
the classification is computed by dividing the total correctly 
classified pixels (i.e., mapped points that belong to their 
actual classes) over the total number of pixels in the error 
matrix. In addition, the KAPPA (k) statistic was computed to 
indicate an overall adjusted accuracy for each classification. 

Results and Discussion 

Model Results and Analysis of SMA Fractions 
Figure 5 shows maps of RMS error values produced by 

the four SMA models examined in this study. Brighter areas 
indicate high RMS errors while darker areas indicate low 
errors. Among the four models, the 4-endmember model 



which utilizes vegetation. imperviou s surface, bare-soil #2. 
and water (used as a surrogate for the shade) was found to 
produce the best results with realistic fraction valu es and a 
mean RMS erro r of 4.3%. As shown in map "0 " of Figure 5. 
the RMS errors for this model do not show any systematic 
pattern in compari son to the other three maps. In addition. 
significa nt reduction s in error values can be observed in the 
urbanized areas of the scene. Th is conforms well to our 
observation that Ridd ' s VIS model may need to utilize an 
addi tional compo nent when applied to other ci ties that differ 
in the ir morphological patterns from those of American 
cities. In the case of Cairo. s~"ppears to be important in 
the distinct ion between various Jrban subdivisio ns. 

The SMA fractions of vegetation . impervious surface. 
bare-soil (#2), and water/shade endmemben are sho....n in 
Figure 6. Brighter areas indicate a higher fr3ctiona1 abundance 
of the endmember while darker areas indicate lower 
abundance. These fracti ons provide a measure of tile physical 
properties o f the dominant classes in the sce ne, thus helping 
to reveal the morphological patterns of the Cairo metropolitan 
area andits surrou ndings. For example. the active agricultural 
fields in the NW quadrant of the sce ne can be characterized 
as consisting primarily o f vegetation and shade with a minor 
amount of soil. consis tent with the types of crops cultivated 
in these areas (map A of Figure 6). In contrast, urban vegetated 
areas such as recreational perks and lawns incl ude a lower 
shade content. and higher vegetation (i,e.• higher green leaf) 
and soil. consiste nt with the smal l trees and gaps of exposed 
soil that exist in such areas . The Nile River and its tributaries 
can be characterized as having a high water/shade content 
due to the lo w reflectance (map 0 . while the Mukatim 
dese rt at thesouthern portion of thescene consists exclusively 
of bare-so il (map B). 

Both the impervious surface and shade endmembers p lay 
a more important role than bare -soil endmembe r as we move 
to the urbani zed area of the scene . Th e central business 
district (CBO) of the cit y can be described as having a high 
content of impe rvious surface and shade. with very low 
vegeta tion and bare-soil fractions (map 0). The shade 
fractions are also very effec tive in revealing the pattern of 
wide stree t networks du e to the darkness of pavement 
mate rials and shadows fro m buildings and trees. Furthe r. 
patte rns ofvegetation. impervious surface andshade fractions 
displ ay the physical variability between different residential 
districts. For examp le. thedominant compone nts of residential 
areas with higher soc ial strata include a considerable amount 
of impe rvious surface . high shade fractions. an d some 
vegetation. This is consis tent with the fabric of these areas 
which include a variety of high-rise struc tures with different 
building and roofing ma terials (e .g.• steel. concrete) mixed 
with recreatio nal areas. sport clu bs. and relati vely wide 
boulevards. In contrast, the less affluent residential districts 
with a lo wer social-status can be characteri zed as having 
lower shade and vegetation fractions. which reflect the 
" higgledy-piggledy burrows" of Cairo's popular quarters 
(Rodenbeck. 1999. pp . 224 ) and are associated with narrow 
streets and low-lying buildings made o f local materials (i.e.• 

A k lll!mnnbn model (YCftlIIioa.. 
imperviou and 101111) 

C ~1lIIIdd (~ 

impem;-. 1Oill l, aDd Wde) 

''it, 
'" . '. 

D ~ber IllOddl lOep:urion. 
i~ 101112,aDd WOe) 

Flpn 5	 RMS error maps fOl lbc four modell eumined in the $hIdy. 
Bripler.us lDdieau: hi&ber erron ....hile darter IWU$ illdkaJe 
Iownerron. 

A VeJetation fractions B Soilmctions 

C Sblde fnr:tiou D Impc:nious m .ce fnr:tiou 

Fip n 6 Fnmon imapa produl;c:d by Ibe ~ model utilizing 
veretatioa- impervious.IOilI'J. andsbllde. Brighterweas~ 

hipee- abundance while d.ter__ iDdkal.e klower iltlundatlce. 

11 



3 to 5 stories on average). Finally, the newly developed land 
located at the SE quadrant can be distinguished by its high 
soil and impervious fractions. and low shade and vegetation 
fractions. 

Analysis of theRMSerrors is also very useful. lbe errors 
indicate that vegetated areas. the Nile River. and urbanized 
areas are ~II characterized by the endmembers (low RMS 
with an avenge less than 3.5%). On the other hand. some 
portions of the Mukatim desert are poorly characterized 
(high RMS) due to variations in the soil reflectance. These 
variations can mainly be attributed to the saturation of pixel 
values because of the strong re~~ that is beyond the 
range of the sensor to detec9Tabie 1 summarizes the 
characteristics of various urban classes in terms of SMA 
fractions and RMS values. 

ClassiRcation Results 
The training sam ple was used as input to a deci sion tree 

classifier. This technique was chosen because it requires a 
minimum numberof assumptions about statistical properties 
of the classes, yel has the potential to provide a set of 
decision rules based on physical properties (Roberts et al•• 
1998a). The final tree consisted of 19 nodes with a 
misclassification rete of 0.07. indicating a high overall 
classificationaccuracyof tbe training sites. The classification 
tree. shown in Figure 7. can further our understanding o(che 
anatomy of the study area in terms of its physical patterns. 
11K: first splitting role. occurring at theroot node . is based on 
vegetation. implying that greenness is the variable that 
produces the largest deviance measure. 'Ibe classes under 
the low-vegetation category « 15%) include desert (OS). 
waterbodies (WB).newly developed land(OL). lower social­
status residential areas (LC). the CBO (BO). while those 
with a high-vegetation component (> 15%) include active 
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agricultural fields (AG) and urban parks and recreational 
areas (UG). The class of higher social-status residential 
areas (HC) is located under both categories. confirming a 
high heterogeneity and physical variability o( this class in 
Cairo as discussed earlier. The desert class is classified 
throughlow vegetat ion. Jew impervious and low shade filter. 
very similar to the water class but the latter has a higher 
shade componenL Both newly developed land (OL) and 
lower social status residential areas (LC) classes can be 
reached through a high impervious and low shade filter. 
Ho~e ver. the bare-soil plays a vital part in the distinction 
between the OL and the LC classes. with OL higher in the 
percentage of exposed soil and lower in vegetation. In the 
case of the business district class (BO), the shade becomes 
more important (>40%). The multiplepaths (orsomeclasses 
reflect variability in class composition: either natural. as in 
the case o( active agricultural (AG) and urban parks (VG) 
classes (e.g., different types of cultivated crops, grass). or 
human-induced as in the case HC, LC and BO classes (e .g., 
building heights, roofing materials. pavement conditions). 
11K: tree confinns the diminished role of soil in the context 
o( long-esrabllshed residential areas of Cairo since the 
distinction between HC and LC classes is achieved in terms 
of vegetation. shade. and impervious surface. However, soil 
is still important for the distinction between other classes 
such as AG versus VG. as well as DL venu s LC. 

Ac:c:uracy A.s.sessment Results 
Applying the splitting rules to theSMA output bands. the 

scene of the study area was classified into the 8 classes 
discussed above. 1be final classification was then assessed 
in tenns of its individual class accuracy. 'The commission 
and omission errors of the 8 classes are reported in Table 2 
(in percent). 1be water bodies (WB) class shows the best 
result with only 0.88% commission error indicating the 
representat ive use of waterlshade endmembe r in the 
classification. The desert (OS) class also shows a high 
accuracy (0% commission error). with an error or emission 
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indicating that only 15.31% of the test points were incorrectly 
excluded from that class. The worst case was the HC class 
with a 12.30% error of commission and 58.20% error of 
omission. This indicates that the training areas did not account 
for the high diversity of the physical settings that exist in the 
residential areas of higher social-status-a characteristic 
which we have already discussed above. Because the LC 
class corresponds to the residential areas with lower social­
status, which are characterized by a homogeneous fabric of 
landscape, the accuracy ofthat class was much better (26.95% 
and 2.34% commission and omission errors respectively). 
As for the other urban classes, business district (BO) and 

'I
newly developed land (OL), the accuracy scores were quite 
good (2.23% and 3.74% omission error for BO and OL 
respectively). The OL class, however. has a higher 
commission error of 16.82% since some of the test points 
under the desert class had been misclassified as the OL class 
because of the high soil fractions. Finally, the accuracy 
results of classes representing vegetated areas were 
acceptable, with 7.46% omission error for active agricultural 
areas (AG) class and 16.33% for urban parks (UG) class. 
The analysis of commission errors indicates a degree of 
confusion between these two classes due to the similarity in 
their physical attributes. 

As mentioned earlier, we also assessed the classification 
accuracy conducted through two per-pixel supervised 
classifiers: maximum likelihood (ML) and minimum 
distance-to-means (MOM). The purpose was to test our 
basic hypothesis that a classification of the urban scene 
based on SMA-derived measures may be superior to other 
traditional per-pixel classifications techniques. Results of 
the comparison between the overall accuracy of the three 
classifications are shown in Table 3. As reported in the table, 
the overall accuracy of the classification based on SMA 
fractions and RMS errors was 89.52% (with a KAPPA (k) 

coefficient =0.88) indicating that the technique performs 
well. The overall accuracy was severely reduced in the case 

Table 2	 Error of commission and error of omission for different classes 
derived through a decision tree classification based on SMA­
derived fractions. 

Class I Commission Omission 
(%) (%) 

Active agricultural areas(AG) 17.41 7.46 
Urban parks and recreational 5.98 16.33 
areas (Um 
Desert (OS) fJ.lJO 15.31 
Water bodies (WB) 0.88 0.00 
Newly developed land(DL) 16.82 3.74 

entral business district (BD) C 3.63 3.23 
Residential areas withlower 26.95 2.34 
ocial-status (LC) s

Residential areaswithhigher 12.30 58.20 
ocial-status (HC) s

Overall Accuracv =89.51% 
Kappa =0.8793 

of the other two classifiers applied directly to the original 
image bands (64.51% and k =0.60 in the case of ML, and 
52.69% and k =0.45 for the MOM). 

These results suggest that, in the case of multispectral 
images with medium spatial resolution, a classification based 
on SMA-derived fractions would be recommended over the 
other two traditional per-pixel classifiers. The results also 
confirm that a decision tree (OT) model is robust and well 
suited to representing the complexity of interactions between 
diverse urban classes through its hierarchical, nonlinear 
structure. Vegetation and impervious surface fractions that 
operate at regional scale (e.g., distinguish broadly between 
vegetated classes versus urbanized classes) were used as 
splitting criteria early in the model, while shade and soil 
fractions that have local influence (e.g., distinguish between 
various urbanized classes) were used near the terminal nodes. 

Summary and Conclusion 

In this paper, we have described a remote sensing 
methodology for analyzing the anatomy of cities using the 
Greater Cairo metropolitan area as an example. The 
methodology adopted is based on applying the SMA 
technique, using endmembers derived from the image. We 
have utilized Ridd's VIS model as a conceptual framework 
to guide us through the selection procedure of the 
endmembers. However, the results of the analysis indicate 
that a 4-endmember model that utilized an additional 
endmember (i.e., shade/water) will provide better fractions 
and lower RMS error than a 3-endmember model based on 
the three main components of the VIS model. This implies 
that Ridd's model may require some modification when it is 
applied to other settings that differ in their morphological 
patterns from the American cities. 

Using a 4-endmember model, we extracted four fractional 
bands, which provided a "soft" classification of the urban 
scene that describes what materials, and how much, are 
present on the ground. We used the results of the soft 
classification to perform a "hard" classification by which the 
urban scene was classified into 8 discrete classes of natural 
and human-built features. Accuracy results validate our 
hypothesis that an approach in which the hard classification 
complements the soft analysis of imagery has the potential 
to provide improved discrimination of urban classes over 
other traditional per-pixel classification techniques. 

SMA addresses the spectral mixture problem which 
implicitly exists in all urban imagery with a medium spatial 

Table 3	 A comparison between the overall classification and KAPPA 
accuracies for the three classifications applied to the study area. 

Decision tree(based Maximum Minimum distance-
on SMA fractions likelihood to-means 

Overall 89.5194 64.5126 52.6875 
accuracy (%) 

KAPPA 0.8793 0.5950 0.4450 



resolution. Future investigations are still needed to examine 
the feasibility of applying SMA to other urban settings, as 
well as to explore potential uses of the technique other than 
traditional land-use/land-cover mapping. Ofcourse, the SMA 
technique does have its own limitations, specifically the 
identification of the required number of endmembers and 
their spectral characteristics. Further, endmembers derived 
from a single-date image cannot be used to analyze other 
images from different dates. This imposes a major limitation 
for applications such as urban change detection. Directly 
related to this problem is the conflict that exists between the 
number of endmembers that ca~ be used in the analysis (4 in 
the case ofIRS images) and ach~~ving a successful model of 
the diverse patterns of urban landscapes. We offer the 
following two suggestions for future research concerning 
the use of SMA in the urban arena: 
(1)	 Investigate the use of reference endmembers for 

conducting SMA. This can be achieved by building a 
region-specific spectral library. This step is essential if 
temporal relationships between urban biophysical 
variables and other phenomena such as the development 
of the city or social variations are to be investigated. 

(2)	 Employ techniques that allow each pixel in the image to 
be modeled as different endmember combinations. This 
technique is known as Multiple Endmember Spectral 
Mixture Analysis (MESMA) (Roberts et al., 1998b). 
MESMA incorporates a large number of endmembers 
in the analysis while meeting the constraints regarding 
the relationship between the number of endmembers 
and image bands. Thus, MESMA can account for 
variations between different materials constituting the 
built environment (since the assumption that a mixture 
between constant endmembers for all pixels in an image 
is unlikely to be valid). 

In terms of the operational value of the SMA approach in 
connection with our ongoing project in Egypt. the SMA­
derived classification of the urban scene seems capable of 
revealing the anatomy of the metropolitan area of Cairo and 
describing areal differences between various urban districts 
(i.e., LC, HC, BD, DL), which can be linked to variations in 
wealth or social class. An analysis of Landsat images for 
Detroit, Michigan, has shown that in that city a classification 
of the change in different types of vegetation occurring in 
urban areas is associated with socioeconomic changes 
occurring in these areas (Ryznar, 1998). Our analysis takes 
the classification scheme beyond that, to examine not only 
vegetation (which was indeed an important variable in our 
data analysis), but other features of the urban scene including 
buildings, shades, and bare soils. The implication of this is 
significant as it suggests that remote sensing imagery can be 
used to compensate for deficiencies in the range of data 
collected in the census. For example, it is rare in developing 
countries such as Egypt for censuses to include questions on 
income and wealth. However, the results of the present 
research indicate that features of the urban environment that 
are observable "from the top" can be classified and quantified 

-to represent patterns of urban morphology that are associated 
with characteristics of the people living on the ground-a 
hypothesis which remains to be tested. 
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