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rural populations (Montgomery and Hewett, 2005; Weeks
et al., 2006). Accra, Ghana is an excellent city to study
neighborhood effects on health and poverty because of its
disparate socio-economic and health conditions, and because
relatively recent and rich census and women’s health data
sets are available (Weeks et al., 2006; Weeks et al., 2007). As
is generally the case for these types of urban data sets, the
census and health data are summarized and reported by
spatial units that vary in size and shape. This leads to the
modifiable areal unit problem or ecological fallacy (Oppen-
shaw, 1983), when attempts to draw statistical inferences
from and between these data sets are compromised or biased
by the irregular reporting units. Thus, delineating neighbor-
hoods in Accra may be a useful means for deriving analyti-
cal units for subsequent statistical analyses, and enable an
evaluation of possible neighborhood effects on health
practice and outcomes.

A means for delineating neighborhoods is through a
regionalization process applied to geospatial data that are
recorded at finer spatial scales than potential neighborhoods
and that have attributes that are relatively homogenous
within neighborhoods. By a potential neighborhood, we are
referring to a spatial urban unit that is delineated through a
regionalization process, which may or may not conform to
an actual neighborhood in terms of its residents sharing
common behaviors and identities. For instance, potential
neighborhoods could be delineated through spatial aggrega-
tion of socio-economic measures from census data that are
recorded for census reporting units. In Accra, the finest level
of census reporting unit is called an Enumeration Area (EA).
EA-level census data can be aggregated to a coarser level to
delineate potential neighborhoods. However, census data are
expensive to capture and organize, are not available for most
cities in developing countries, and can become rapidly out
of date, such as is the case for Accra. Also, if census data
were to be aggregated to form analytical units for subsequent
statistical analysis, a less biased approach to delineating
these analytical units would be to use an alternative source
of data for regionalization.

Remote sensing provides a primary source of geospatial
data for regionalization (Tian et al., 2005) and/or delineation
of potential neighborhoods. Remotely sensed images have
been used for regionalization purposes in the field of
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Abstract
The objective was to test GEographic Object-based Image
Analysis (GEOBIA) techniques for delineating neighborhoods of
Accra, Ghana using QuickBird multispectral imagery. Two
approaches to aggregating census enumeration areas (EAs)
based on image-derived measures of vegetation objects were
tested: (a) merging adjacent EAs according to vegetation
measures, and (b) image segmentation. Both approaches
exploit readily available functions within commercial GEOBIA
software. Image-derived neighborhood maps were compared
to a reference map derived by spatial clustering of slum index
values (from census data), to provide a relative assessment of
potential map utility. A size-constrained iterative segmenta-
tion approach to aggregation was more successful than
standard image segmentation or feature merge techniques.
The segmentation approaches account for size and shape
characteristics, enabling more realistic neighborhood bound-
aries to be delineated. The percentage of vegetation patches
within each EA yielded more realistic delineation of potential
neighborhoods than mean vegetation patch size per EA.

Introduction and Background
Neighborhood is a term that is common in both academic and
lay vernaculars, but it may have many different meanings or
usages (Sampson et al., 2002; Talen, 1999; Warren, 1978).
Normally, a neighborhood is considered to be a spatial unit
within a city or urban area. But in reality, neighborhoods are
social constructs, and there are no precise definitions or
delineations for them in physical space. Here we define
neighborhoods to be a spatial unit within which urban
residents share common social-cultural behaviors and
identities. Overall, our interest in delineating neighborhoods
is two-fold. First, we are interested in the manner in which
neighborhood dwellers share information about health
practices and outcomes, and are similarly exposed to environ-
mental factors that may influence the health of an individual
living within the neighborhood. Second, we are interested in
delineating spatial units at the neighborhood scale for which
disparate socio-economic, health, and environmental data can
be optimally summarized to support spatial statistical
analyses. The emphasis here is on the second objective.

Recent studies suggest that intra-city variations in
poverty and health in developing countries, such as most of
Africa, may be greater than differences between urban and
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Figure 1. Flow chart portraying the data processing and analysis steps.

hydrology (Boulet et al., 2000; Brunner et al, 2004), but
apparently, in a very limited manner for intra-urban studies
or delineating neighborhoods per se (Zhou, 2006). However,
several previous studies have evaluated urban socio-economic
conditions using high spatial resolution satellite image data
(Bjorgo, 2000; Giada et al., 2003; Stow et al., 2007). For
remotely sensed images to be useful for urban regionalization
and neighborhood delineation, some physical environmental
and/or urban infrastructural characteristics of neighborhoods
must be identifiable and unique (Rashed, in press). The urban
vegetation-impervious-soil (V-I-S) model of Ridd (1995)
provides a potentially useful remote sensing approach to
deriving geospatial measures that may be used for regionaliza-
tion purposes. By combining the V-I-S model with GEographic
Object-based Image Analysis (GEOBIA; Casilla and Hay, 2008),
proportions, sizes, and shapes of basic urban materials and
structures may provide the link between the biophysical
urban landscape and neighborhoods (Stow et al., 2007).

Accra is a city of around two million people that has
grown rapidly in the last decade (Ghana Statistical Services,
2002). While a majority of Accra’s inhabitants are poor and
live in low socio-economic status (SES) neighborhoods, most
of the slums of Accra consist of formal, high density
housing settlements, and few informal slums or camps exist
currently. In many cases moderate to high SES neighbor-
hoods are juxtaposed with slums, and tend to be located at
higher elevations where in-flooding from tropical rains is
less common. While size of house structures and properties
tend to indicate differences in SES of residential areas (e.g.,
larger houses and properties indicate higher SES), structures
in slum areas often consist of large networks (e.g., com-
pounds) of connected or closely separated single story
dwellings that can appear on high spatial resolution imagery
to be large buildings.

The most striking and revealing difference between
residential areas of varying SES is the relative abundance of
vegetation cover. High SES areas have a high proportion of
landscape vegetation cover while low SES areas have little
(Lo and Faber, 1997). Thus, the proportion or size of
vegetation objects may be effective criterion for delineating

Accra neighborhoods. The greatest potential confusion
occurs between High SES residential areas and institutional
land-use, such as the national government building
complexes, that both contain large amounts of landscape
vegetation. Another complication is that land-use is often
“mixed use,” such that buildings may be used both for
residential and commercial purposes.

The objective of this study was to test approaches to
delineating neighborhoods of Accra based on high spatial
resolution multispectral image data from the QuickBird
satellite system and GEOBIA. Specifically, we evaluate two
parsimonious approaches to regionalizing EAs by using
quantitative measures of vegetation objects as the aggrega-
tion metrics and constraining the aggregation/segmentation
process using EA boundary data. Both approaches exploit
readily available functions within the commercial GEOBIA
software called Definiens (Version 5); one by merging EAs
according to similarity of vegetation objects and the other by
image segmentation.

Data and Methods
We test the two parsimonious approaches to delineating
neighborhood units based on QuickBird satellite image data
and GEOBIA. EAs were used as the basic spatial unit of
analysis and were aggregated in an attempt to form neigh-
borhood units, based on similarity in vegetation patch
proportions or mean patch size derived from GEOBIA.
Digitized EA boundaries were initially georeferenced only
approximately, so the georeferenced QuickBird image was
used as a base for fine-tuning the georeferencing of the EA
boundaries and ensuring high registration precision between
the two data sets. Two approaches to spatial aggregation
were tested: (a) polygon merging, and (b) image segmenta-
tion. Image-derived neighborhood maps were compared with
the reference map derived using the slum index (Weeks
et al., 2007) and a spatial data aggregation procedure
(Duque, 2007a) described below to provide a relative
assessment of potential map utility. A flow chart portraying
the data processing and analysis steps is shown in Figure 1.
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Figure 2. Full extent of QuickBird near infrared waveband image covering
Accra, Ghana (top) with enlarged subset of the study area (bottom). Image
was captured 12 April 2002. Polygons displayed on subset image represent
georeferenced census enumeration area (EA) boundaries.

A cloud-free QuickBird satellite multispectral with a
2.4 m nominal ground sampling distance (GSD) captured on
12 April 2002 was utilized. The full image covers an 18 km 
(E to W) � 13 km (N to S) area, which is approximately
80 percent of the Accra Metropolitan Area (AMA). For this
study we used a 6 km (E to W) � 5 km (N to S) subset of the

QuickBird image (shown in Figure 2) that contained most of
the neighborhood and land use types found within Accra.
The imagery had been georeferenced to the Universal Trans-
verse Mercator map projection by DigitalGlobe at the Stan-
dard processing level (CE90 � 23 m; RMSE � 14 m). Ocean
and inland waters were masked prior to image analyses.
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TABLE 1. INPUT FEATURES USED IN LEVEL 1 SEGMENT CLASSIFICATION

Selected Features Feature Description

Brightness Sum of digital numbers of all bands
Compactness Length*width/number of pixels
Shape Index Border length/4*object area1/2

Mean Red Band Mean red band value
Mean NIR Band Mean NIR band value
Std. Dev. Blue Band Standard deviation of blue band
Std. Dev. NIR Band Standard deviation of NIR band
Length/Width Object length divided by object width

A map that had been generated through GIS and spatial
aggregation modeling of census data was utilized as refer-
ence data for a relative assessment of the utility of image-
derived neighborhood maps. Figure 2 contains a map of EA
boundaries, and the reference map is displayed in Figure 4f.
The reference map was based on a slum index that was
calculated for each EA by summing five census variables for
each housing unit based on UN-Habitat (2006) definitions of
slums as representing place that have one or more of the
following characteristics: (a) no running water inside the
house, (b) no toilet connected to sewer system, (c) three or
more persons per room, (d) roof of non-durable material,
and (e) insecure tenure (e.g., squatting) (Weeks et al., 2007).
Each housing unit was scaled from 0 to 5, where zero
indicates no slum characteristics and five indicates all slum
characteristics. The average score for housing units in an EA
is the slum index for that EA.

The EA-level map of slum index was subjected to a
polygon spatial aggregation procedure called the 
Max-P-Region (Duque et al., 2007a) to produce 277 “analyt-
ical regions.” In this method, the problem of aggregation of
spatial data is conceptualized as a special case of cluster-
ing in which the geographical contiguity between the
elements to be grouped are considered. This particular case
of clustering methods is usually known as contiguity-
constrained clustering or simply the regionalization
problem (Duque et al., 2007b). Each EA is compared to its
neighbors to see if the neighbors are more like the “kernel”
EA than would be expected by chance alone. If so, the
neighbor is attached to the kernel EA, and then this new
agglomerated EA is compared with neighbors. The process
is iterative, working toward a stable solution in which all
agglomerations (analytical regions) represent the maximum
homogeneity within neighborhoods, and the maximum
heterogeneity between neighborhoods.

Of particular importance is that the method is multivari-
ate, taking into account several different variables at a time,
and thus, it is an improvement on an earlier agglomeration
method using similar data. In this instance, each of the five
slum characteristics of the housing units in an EA was
evaluated against the values for neighboring EAs in order to
make a decision about agglomerating one EA with another. A
series of random permutations was run to confirm that the
results were significantly different from results that could be
obtained by chance alone.

A bottom-up, hierarchical segmentation strategy with two
levels of image objects (Stow et al., 2007) was implemented
for the image-based derivation of potential neighborhoods.
Definiens uses a region-based local mutual segmentation
routine, a type of region growing approach, to generate image
objects (Baatz et al., 2000; Benz et al., 2004; Yu et al., 2006).
We controlled segmentation by both scale (size of segment)
and shape (compactness and smoothness characteristics of
segments) parameters in an interactive, trial-and-error fashion.

The first and finest segmentation (Level 1) consisted of
potential V-I-S patches, where our primary interest was to
delineate vegetation patch objects. Image inputs (i.e.,
spectral features) for the Level 1 segmentation were the four
QuickBird multispectral wavebands, NIR, red, green, blue
(in order of input) (Stow et al., 2007). Level 1 segmentation
was optimized based on visual inspection of training objects
(e.g., trees and buildings) on segmentation products gener-
ated iteratively by altering segmentation parameters. We
used a supervised classification of V-I-S classes based on a
standard nearest neighbor (a.k.a., minimum distance to
mean) classifier. Input features were selected using a
statistical separability measure embedded in the Definiens
routine known as Feature Space Optimization. The selected
“optimal” features are listed and described in Table 1.

Vegetation objects from the Level 1 segmentation and
classification were used to derive vegetation metrics at the
EA level. Values for the proportion of vegetation patches and
mean size of vegetation patches were derived for each EA
and are depicted in Figure 3.

The second segmentation was at a coarser level (i.e.,
larger objects) at which EAs were grouped in an attempt to
form neighborhood units. For Level 2 segmentation, feature
inputs were either vegetation patch fraction or vegetation
patch size features. To allow segmentation of the Level 1
summary results directly, it was necessary export the Level
1 objects into an ArcGIS® shapefile (*.shp), convert them to
a raster layer, and import them back into Definiens as if
they were a spectral layer. To constrain the Level 2 segmen-
tation, the EA boundary file was imported in vector format
and was an input to the segmentation routine as a thematic
layer (along with the vegetation patch features). A large
scale parameter was used to generate objects that were only
limited in size by the EA boundaries. This ensured that
aggregated segments conformed to EA boundaries and that
resultant segmentation products directly represented maps
depicting potential neighborhood boundaries.

To limit the generation of unrealistically large neighbor-
hood objects, a size-constrained iterative segmentation
procedure was also tested. After initial segmentation using a
scale factor of 15 (Shape � 0.3; Compactness � 1.0), objects
smaller than an empirically defined threshold (200,000 m2)
were allowed to aggregate further in subsequent segmenta-
tions. The scale factor was increased sequentially from 100
to 1,000 in increments of 100.

A simpler and more direct approach to aggregating EAs
was also tested using the Merge function of Definiens
software. This function employs topological and feature
similarity criteria to group adjacent image segments. The
topological criterion is simply that only objects sharing a
common boundary can be merged and the spectral criterion
is a simple linear distance measure for input features. In this
case, the features were vegetation patch proportion and
mean patch size for each EA. As with the selection of
segmentation parameters, the merge distance factor was
optimized through interactive modification according to
visual examination of aggregated EA boundaries. The objec-
tive was to minimize the number of newly formed neighbor-
hood objects, while avoiding elongated or low compactness
objects.

Spatial correspondence of the five image-derived
neighborhood maps was compared with the reference map
that had been derived from the spatially aggregated slum
index (census-based) data. This provided a relative assess-
ment of the potential utility of the image-derived maps for
representing actual neighborhoods in Accra, given that there
is no absolute definition or delineation of neighborhoods at
this time. We assessed spatial correspondence by comparing
summary statistics and through spatial correspondence
overlay analysis. Summary statistics included number, mean



PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Augu s t  2010 5

Figure 3. Maps of (a) mean vegetation size, and (b) vegetation proportion and for EAs within the Accra,
Ghana study area. Vegetation proportions and size data were estimated from patch-level segmentation
and classification of QuickBird multi-spectral image data.

size, and range of sizes of neighborhood units. Spatial
correspondence analysis was challenging to perform since
the image-derived and reference maps represent polygons
that delineate possible neighborhoods, but have no attributes
or labels associated with them. With the census-derived map
as the reference, the mean number of image-derived neigh-
borhood polygons contained within each reference map
polygons was tabulated by determining centroids for image-
derived polygon and counting centroids contained within
each reference polygon. A smaller average number of
contained centroids indicates greater correspondence with
the reference map, since the image-derived maps tended to
represent a greater number of neighborhood polygons 
(i.e., fewer EAs were aggregated).

Results
The five image-derived maps representing potential 
neighborhood boundaries are shown relative to the reference
map in Figure 4f. It is apparent in Figure 4 that more
neighborhoods are portrayed on the image-derived maps than
the reference map, except for the map derived by size-
constrained iterative segmentation. Stated differently, fewer
EA aggregations resulted from the merging or segmentation of
the QuickBird-generated vegetation patch objects than for the
aggregation of the Slum Index. The map generated from the
size-constrained iterative segmentation procedure applied to
QuickBird-estimated vegetation proportions is visually
most similar to the reference map. This is the case because
the procedure aggregated more EAs than those used to
generate the other image-based maps. In general, maps
derived using segmentation were more similar to the refer-
ence map than those generated with the merge approach, and
maps based on vegetation proportion inputs were more
similar to the reference map than those based vegetation
size feature inputs.

The size-constrained iterative segmentation map and the
reference map appear to represent similar size units that
have different shape configurations, but neither map appears

to better represent actual neighborhoods. The size-con-
strained iterative segmentation approach better identified
EAs that mostly consisted of government and other institu-
tional land-use from residential areas, whereas the slum
index map tended to group these units with EAs composed
of high SES residential areas. Low SES neighborhoods seem
to be more fragmented on all maps than our ground recon-
naissance suggests is realistic, as a consequence of incom-
plete aggregation of numerous small EAs in these densely
populated areas. The shape representation criteria of the
image segmentation approach to aggregation yielded neigh-
borhood units that have more smoothly varying boundaries
than those depicted on the reference map or the spectral
merge products.

Table 2 lists summary statistics and Table 3 spatial
correspondence analysis results from the comparison of the
five image-derived maps of neighborhood units with the
reference map. Both tables substantiate the findings from the
visual analysis of map products. The map based on size-
constrained iterative segmentation of vegetation proportions
was more similar to the reference map in terms of the
number and size of potential neighborhoods, while the other
four image-derived maps depicted many more, smaller units.
Spatial correspondence analysis results show that the map
derived with size-constrained iterative segmentation was
similar in terms of number and size of units, and on aver-
age, 1:1 image-derived units were contained within a
reference map unit, which implies a high level of agreement.
However, the only exact, one-to-one matches were larger EAs
that had not been aggregated.

Conclusions
Our evaluation of approaches to delineating neighborhoods
of a large city in a developing country is a unique applica-
tion of GEOBIA. In fact, few attempts at delineating neighbor-
hoods based on remotely sensed imagery (Zhou, 2006) and
none pertaining to intra-urban regionalization studies are
evident in the remote sensing literature. Such an application
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Figure 4. QuickBird image-derived and census-derived maps of potential neighborhood units based on
aggregation of enumeration areas (EAs) for the Accra study area: (a) feature distance merge approach
based on vegetation patch proportions, (b) feature distance merge approach based on mean vegetation
patch sizes, (c) segmentation approach based on vegetation patch proportions (d) segmentation
approach based on mean vegetation patch sizes, (e) size-constrained iterative segmentation approach
based on vegetation patch proportions, and (f) reference map derived with EA Slum Index values (based
on census data) and aggregation using the Duque (2006) spatial clustering technique.
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TABLE 2. SUMMARY STATISTICS FOR POLYGON UNITS IN NEIGHBORHOOD MAPS

Aggregation approach-Feature input No. Mean Size (m2) Std. Dev. Size (m2)

Reference 79 273,827 429,728
Spectral merge-veg % 286 115,441 234,821
Spectral merge-veg size 432 68,892 152,561
Segmentation-veg % 184 116,701 240,995
Segmentation-veg size 309 69,565 159,124
Size-constrained iterative 69 314,068 330,642
segmentation-veg %

TABLE 3. SPATIAL OVERLAY CORRESPONDENCE OF IMAGE-DERIVED NEIGHBORHOOD MAPS RELATIVE TO
THE REFERENCE MAP. VALUES REPRESENT NUMBER OF IMAGE-DERIVED POLYGON CENTROIDS WITHIN

REFERENCE POLYGONS. SMALLER VALUES IMPLY GREATER SPATIAL CORRESPONDENCE.

Aggregation approach-feature input Mean Standard Deviation Maximum

Spectral merge-veg % 2.53 2.64 16
Spectral merge-veg size 4.14 3.82 23
Segmentation-veg % 2.47 2.27 9
Segmentation-veg size 4.08 3.38 11
Size-constrained iterative 1.01 1.42 8
segmentation -veg %

is particularly challenging given the vagueness associated
with the meaning and definitions of neighborhoods and
therefore, the difficulty in assessing the validity and utility
of image-derived maps of neighborhoods. Even the map
evaluation phase of this study required development of
novel methods for comparing maps of neighborhood 
boundaries.

We tested two approaches to aggregating census units
(EAs) to form potential neighborhoods, based on commercial
GEOBIA software. An EA-constrained image segmentation
approach to aggregation was more successful than a simple
polygon merge technique that was based solely on the
similarity of image-derived features between contiguous EAs.
The segmentation approach is capable of accounting for size
and shape characteristics, which enables more realistic
neighborhood boundaries to be delineated. Further refine-
ment of the EA-constrained segmentation procedure was
required to achieve a reasonable map of neighborhood
boundaries that more closely approximated a reference map.
The refinement entailed constraining or limiting the size of
EAs that were aggregated through segmentation, and sequen-
tially increasing the size constraint in an iterative fashion.
The reference map was derived from census data by calcu-
lating a slum index and then spatially aggregating EAs using
spatial clustering routine.

While many image-derived feature inputs were explored
initially, two vegetation features based on patch-level
segmentation of urban objects showed the most promise and
were tested. The percentage of vegetation patches within
each EA was a better discriminant for delineating potential
neighborhoods than mean vegetation patch size per EA.
Vegetation proportions within residential neighborhoods
tend to be greater for higher SES residential areas and can be
readily estimated and mapped using QuickBird or other
visible/NIR optical image data.

This study is a first step towards semi-automated,
image-based delineation of urban neighborhoods based on
high spatial resolution image data. While it is appropriate to
start with a parsimonious approach that is based on aggrega-
tion of EAs, particularly when the primary available refer-
ence data were derived in a similar manner, the ultimate

objective is to delineate neighborhoods from the pixel up,
based on GEOBIA techniques. Until such objectives are
realized, visual image interpretation of high spatial resolu-
tion imagery provides an immediately available and likely
successful means for delineating neighborhoods, particularly
when conducted by interpreters who are generally familiar
with the neighborhoods of a city. As neighborhood defini-
tions become more specific and train/test data are available
through field surveys and resident interviews, the ability to
more automatically delineate neighborhoods will likely be
realized.
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